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Detailed chemical kinetic models involving hundreds of species and thousands of reactions have recently

been developed for biomass thermochemical conversion. The high computational cost of these kinetic

models makes them impractical even for simple reactor geometries. In this work, we develop a recurrent

neural network (RNN) model for the secondary gas-phase reactions of biomass gasification in an inert

environment in the temperature range of 800–1000 °C. A gated recurrent unit (GRU) based RNN

architecture is used to ensure accurate predictions over the entire range of time in the reactor. A compact

kinetic model reduced from a detailed kinetic scheme using an automated reduction algorithm is

employed as the reference kinetic scheme for the gas-phase reactions. A comprehensive range of biomass

compositions and reactor conditions are used to generate the training data ensuring a wide range of the

model applicability. The developed GRU-based RNN model can predict the temporal evolution of

important reactants and products during biomass gasification in the freeboard region of a fluidized bed

reactor. The model reduces the computational cost associated with the reference kinetic scheme by four

orders of magnitude.

1 Introduction

Biomass is a crucial renewable source of carbon. Large-scale
biomass conversion into fuels and chemicals is imperative in
reducing our reliance on fossil fuels and tackling global
warming. Thermochemical conversion, involving fast pyrolysis
and gasification in fluidized bed reactors, is a robust
technique to convert a wide variety of non-food sources of
biomass into gaseous and liquid products. At present, this
conversion technique is facing several challenges. For
example, the lack of control over the yield and composition of
tars produced during biomass gasification causes process
interruptions and requires expensive cleanup.1,2 Experiments
alone fail to provide detailed insights due to the harsh reactor
conditions, opaque solid phase, and coupling of the reactor
hydrodynamics with the chemical conversion process.
Comprehensive models are required to predict reactor
performance and allow reactor design and optimization.

Models for the biomass thermochemical conversion range
from detailed but computationally expensive computational
fluid dynamics (CFD) simulations3 to computationally fast

ideal reactors.4 The CFD simulations are necessary to
understand the coupling between the reactor flow dynamics
and chemical processes. However, CFD simulations become
too expensive for large-scale applications, and ideal reactor
models are preferred.4 In ideal reactor models, limits of
transport processes are assumed, for example, complete
mixing in a continuously stirred tank reactor (CSTR) and no-
axial mixing in a plug flow reactor (PFR). In some cases,
insights gained from CFD simulations are combined with
ideal reactors.5 An adequate level of modeling is selected
depending on the application and details required.

Biomass gasification takes place at higher temperatures
(∼800–1000 °C), where the solid biomass produces
intermediate or primary products, which are then converted
to gases (e.g., CO and H2) and tar species (e.g., phenol and
naphthalene). For biomass gasification modeling, a common
assumption is to model the bubbling bed and freeboard
regions of the fluidized bed as the CSTR and PFR,
respectively.4–7 The accuracy of these models relies on
adequately representing the conversion chemistry involving
the volatile release from biomass (primary reactions) and the
subsequent gas-phase evolution (secondary reactions).
Recently developed detailed kinetic schemes,8–10 consisting
of hundreds of species and thousands of reactions, allow the
possibility of a comprehensive investigation of reactor
operating conditions in biomass conversion. However, their
usage is limited by the high computational cost and difficulty
in solving the associated system of stiff ordinary differential
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equations (ODEs). For this reason, modeling studies in the
literature utilize global kinetic schemes consisting of a few
lumped species and reactions; however, these models cannot
predict the product composition.11–13 In a few studies,8,14

automatic reduction algorithms, such as the directed relation
graph (DRG)15 and the DRG with error propagation
(DRGEP),16 are used to reduce the detailed kinetic models.
Reduced kinetic models require less computational resources
than detailed models, but they are still computationally
expensive and need stiff ODE solvers.8 Nonetheless, high
variability in biomass feedstock and the heterogeneous
structure of biomass particles make the chemistry modeling
a daunting task.9,17

The challenge of the high computational cost and
complexity of using detailed or reduced kinetic models can
partially be resolved using machine learning algorithms, which
have recently found applications in numerous areas, including
reaction engineering. Examples include reaction screening,18

reaction condition optimization,19 modeling fuel chemistry,20

and kinetic Monte Carlo models.21 Machine learning models
require most of the computational effort a priori during the
development stage and are computationally fast during their
application. This aspect makes machine learning attractive in
the context of biomass thermochemical conversion. Several
investigations have focused on building machine learning
models for biomass thermochemical conversion using
experimental22–29 and simulation data.30 These investigations
primarily employed artificial neural networks (ANN), decision
tree, random forest, and support vector regression. Two
significant limitations of these works are the inability to predict
the temporal evolution of the product yield and composition
and the applicability in a narrow range of parameters,
especially for models based on experimental data. Machine
learning models able to predict temporal variations in the
reactant and product compositions under realistic reaction
conditions are missing in the literature.

This work tackles the challenges mentioned above by
combining DRGEP,16 an automatic reduction algorithm, with
a recurrent neural network (RNN) to build a model for
predicting the secondary gas-phase reactions of biomass
devolatilization (primary) products in the freeboard region of

a fluidized bed reactor. Since the freeboard region is modeled
as a PFR, an RNN is employed due to its ability to store
information in a sequence. The developed RNN model can
predict the composition of 27 target species, consisting of
major gaseous and tar products, in a PFR. These target
species, the reactor temperature (between 800–1000 °C), and
the residence time or length of the PFR constitute the model
input. Our work demonstrates the efficacy of the combined
application of automatic reduction algorithms and machine
learning tools to develop computationally fast models for
complex reaction systems, such as biomass gasification.

2 Methodology

The objective of developing an RNN model is to predict the
reactant and product compositions during biomass
gasification (under inert conditions) in fluidized bed reactors
where the freeboard region can be modeled as an isothermal
PFR. Fig. 1 shows a schematic of the biomass gasification
process and where the RNN model fits. As shown in the
figure, biomass is converted to primary products in the
bubbling bed region, which are subsequently converted to
secondary products in the freeboard region. The development
of the RNN model for the freeboard region involves four
essential steps: identification of input–output variables,
generation of the training data representative of the target
application, selection of the RNN structure, and training and
testing of the developed model. These steps are detailed in
the following subsections.

2.1 Input–output variables

Biomass gasification consists of two major sequential steps:
devolatilization of solid biomass in the bubbling bed region
and the secondary gas phase reactions of the devolatilization
products in the freeboard region. The biomass
devolatilization products, called the primary products, are
the reactants for the secondary reactions. We use the kinetic
model31 of the CRECK modeling group to describe biomass
devolatilization. The solid-phase reactants, representing the
biomass composition, include cellulose, hemicellulose and
three types of lignin. Table S1 in the ESI† summarizes the

Fig. 1 Schematic of the biomass gasification process and the RNN model. The RNN models the dynamics of the freeboard region of the fluidized
bed gasifier. The input to the RNN model consists of the reactor temperature and the mass fractions of 27 species provided in Table 1.
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compositions of these five components and ash in various
biomass considered in this work. The model for
devolatilization consists of 24 irreversible reactions involving
the five solid-phase reactants and twenty gas-phase products.
This kinetic scheme has been validated against experiments
in a wide range of operating conditions and feedstock.31–33

For the secondary reactions, we use a compact kinetic model8

(39 species and 118 reactions) developed by reducing a
detailed kinetic model (396 species and 3210 reactions) with
the DRGEP,16 an automatic chemical mechanism reduction
tool. The error between the predictions of the compact and
detailed kinetic models is less than 10% for most of the
species.8 The kinetic model takes the twenty primary
products of the devolatilization chemistry31 as input and
predicts the composition of major constituents of permanent
gases and tar species. A total of 27 species (including the
twenty primary products) were identified as the target
species8 for the DRGEP. The reduced kinetic model8 is the
reference model in this work that the RNN model is expected
to reproduce.

The input to the RNN model consists of the reactor
temperature and the mass fractions of the 27 chemical
species, provided in Table 1, that are part of the reference
kinetic scheme. The temporal evolution of these 27 species in
a PFR is the output of the RNN model. For this work, the
temperature range is 800–1000 °C, and the maximum
residence time is five seconds, representative of biomass
gasification conditions.

2.2 Training, validation and test data

The applicability and accuracy of a machine learning model
rely on the training and testing data. The complexity of
biomass gasification makes this task challenging. There is
considerable heterogeneity in the biomass composition and
properties, which must be considered while generating the
training data. To this end, we generate the training data in
two steps. In the first step, biomass devolatilization is
simulated employing a spherically symmetric one-
dimensional intraparticle model34 coupled with the kinetic
scheme31 of the CRECK modeling group for widely varying
biomass properties and reactor conditions, as shown in
Table 2. The first step provides 810 composition sets of
primary products.

In the second step, the primary products obtained in the
first step undergo secondary gas-phase reactions to form
light gases and tar species. These reactions are represented
by the reference kinetic scheme8 and simulated in a PFR

configuration at five temperatures in the range of 800–1000
°C. A time resolution of 50 ms is used to resolve the
evolution of chemical species adequately. Thus, for a 5 s
residence time in the PFR, we generate data at 100 time
points, for each of the 27 species. The resulting data
consists of about 11 million species compositions (∼0.4
million data points for each of the 27 species). The mass
fractions of the 27 target species are normalized to a
standard normal distribution using StandardScaler class of
scikit-learn,35 ensuring that the data for all species has the
same order of magnitude and is zero-mean. The data is
divided into training, validation, and test sets in the ratio of
0.6 : 0.2 : 0.2. Normalization is performed on the training
data, and the associated parameters (mean and standard
deviation) are then used to normalize the validation and
test sets. With the input–output variables being identified
and training data being available, the next step is selecting
an appropriate RNN structure.

2.3 Structure of the RNN model

RNN is a subclass of neural network architectures commonly
used for solving sequence-based problems. RNN can handle
data with variable sequence lengths, and their parameter
sharing properties make them ideal for solving tasks such as
sentence classification, image captioning, and language
translation.36–40 A brief description of the basic principles of
the RNN model is provided here.

We define an input sequence of length T as X = x1, x2⋯,
xt, xt+1,⋯, xT for any general t ∈ {1,⋯, T}. The corresponding
output at time t is represented as yt. Mathematically, a
simple RNN model can be represented as:

yt ¼ f xt; stð Þ
where st ¼ g xt−1; st−1ð Þ (1)

Here st represents the hidden state (at time t) that holds the
information from the sequence seen so far. s0 is initialized

Table 1 Input and output chemical species used in the RNN model

H2 H2O CO CO2 CH2O CH4 CH3OH
C2H2 CH3CHO C2H4 C2H6 CH3COCH3 Xylose HCOOH
A1a HMFa A2a A1OHa LVGa HAAa C5H6

C5H4O C2H2O2 C8H10O3 Coumaryl C2H5OH C11H12O4

a A1: benzene, A2: C10H8, A1OH: phenol, LVG: levoglucosan, HMF: 5-hydroxymethyl furfural, HAA: hydroxyacetaldehyde.

Table 2 Parameters used to generate the training data in step 1

Parameter Value

Reactor temperature 800, 850, 900, 950, 1000 °C
Heat transfer coefficient 300, 1000, 3000 W m−2 K−1

Biomass particle diameters 300 μm, 1 mm, 3 mm
Moisture content 0, 10, 20 kg water per kg dry biomass
Solid heat capacity 2300 J kg−1 K−1

Biomass bulk density 650 kg m−3

Pressure 1 atm
Biomass composition List31 provided in Table S1 in the ESI†
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and passed to the above recurrence relation in the first step.
The function f generates the output at the step yt using the
hidden state from the previous step st−1 and the present step
input xt. The state st is updated by the function g. The
training data is used to learn the functions f and g to predict
the output over the entire sequence t ∈ {1,⋯, T}. Several
variations of the above mathematical formulations are used,
but the main idea of recursively using the functions remains
the same.

RNNs can be trained using the same backpropagation
technique used in artificial neural networks and deep
learning. The different steps in a sequence represent the
residence timesteps in the PFR, along which the data for the
27 species is available. The technique called backpropagation
through time41 (BPTT) involves backpropagation through
these timesteps in a sequence while finding gradients of the
parameters. It is similar to the usual backpropagation
technique for finding gradients, apart from the fact that the
gradient of the current timestep is calculated with respect to
the previous timestep as well.

This work aims to predict the species concentrations along
the length (residence time) of the reactor, starting from a given
initial concentration. In general, an RNN model is adequate for
sequences of short length; training an RNN model for long
sequences is challenging. While backpropagating through time
in long sequences, the training suffers from problems of
exploding or vanishing gradients.42 In both situations, an RNN
model fails to learn the model accurately. Commonly employed
gradient descent is prone to fail to train an RNN model to learn
long term dependencies in a long sequence. In this regard,
long short term memory43 (LSTM) and gated recurrent units44

(GRU) are robust RNN architectures that handle some of the
limitations of a feed forward RNN architecture and provide a
way to address long term dependencies. LSTM and GRU use
states to encode the sequence to handle the long term
dependencies as valuable information is already saved in the
states. Both GRU and LSTM based RNN models have
comparable performance, but a GRU cell uses fewer

parameters, requiring less memory and shorter training and
execution time.45 We use GRU based RNN models in this work.

2.3.1 Model architecture. We start with a simple RNN
architecture with a GRU layer (hereafter referred to as model
1), which is schematically represented in Fig. 2(a). The
architecture has an input layer, a GRU layer, and an output
layer. This initial model architecture uses one fully connected
output layer with linear activation. The repeat vector layer
does not contain any parameters; it repeats the input a given
number of times, 100 times here.

RNNs use unique embedding layers to encode the input
more efficiently for tasks such as machine translation and
speech recognition. We add a fully connected dense layer
after the input layer (grey-shaded box in Fig. 2(b)) in the
architecture to mimic such an embedding layer. The output
space of the GRU layer is limited as the gates use tanh or
sigmoid activation. Since the output layer with linear
activation of model 1 might not decode the output efficiently,
we add another fully connected layer before the output layer
with ReLU activation to introduce non-linearity. The
improved RNN model architecture (model 2) is schematically
depicted in Fig. 2(b).

Training and testing of the model architecture will be
discussed in the next section. As shall be discussed
subsequently, we observed that both of these models showed
larger errors, especially at the initial time-points. One of the
reasons for this could be the lack of variability in the initial
state of GRU. The model architectures model 1 and model 2
initialize the GRU state to a zero vector for all model inputs.
To address this issue, we add a fully connected layer (orange-
hatched dense layer of Fig. 2(c)) into the model, which is
taken as the input layer and uses its output as the initial
state for the GRU. Including the initial state training in the
model architecture considerably improved the results for the
first few milliseconds. The model architecture (model 3) with
the initial state training is shown in Fig. 2(c).

We end this discussion on model architecture by noting
that an important distinction from the traditional RNN
architectures is using a repeat vector layer to pass the input
layer (model 1) or the output of the dense layer used to
encode it (models 2 and 3) to the GRU cell at each time step
during training and testing. In the traditional RNN structure,
the output at time step t − 1 is used to predict the output at
time step t. For example, in machine translation tasks, the
output of the RNN model is the probability distribution over
the vocabulary of the target language, and the prediction is
accurate so long as the output word with the maximum
probability distribution matches the reference word. In
contrast, since any deviation of the output value from the
reference value is an error, we employ the RNN architecture
as a regression model using the initial concentration to
predict future time steps. Another key distinction with tasks
such as machine translation is that Teacher forcing46 is used
in training such RNN models so that the model learns the
correlation xt+1real = f (xtreal, s

t), where f is the function learned
by the RNN. However, in tasks such as prediction of reactor

Fig. 2 The three RNN architectures used in this work: (a) model 1, (b)
model 2, and (c) model 3. Dense layers with ReLU activation (shaded
and hatched boxes) are added to improve model prediction.
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concentrations in future, the model will be trained for xt+1pred =
f (xtreal, s

t), whereas only the x0pred = x0real is known exactly and
the error in prediction of future output, i.e., xt+1pred = f (xtpred, s

t),
gets carried forward and compounded. Thus, in both training
and testing stages, we provide only the initial concentration
x0 as the RNN model input and let the state of GRU handle
the time progression.

2.3.2 Training the RNN model. An adaptive learning rate
algorithm, Adam,47 is used to adjust the parameters in the
neural network to minimize the mean squared error (MSE)
during training. The learning rate, scheduled according to
the inverse time decay, decays as expressed in the
following equation:

lr ¼ Initial learning rate

1þ learning rate decay rate
learning rate decay steps × n

(2)

where n is the number of steps done during training. Table 3
shows the list of the hyperparameter values considered. We
performed a random search over a combination of these
values and selected the hyperparameter values that yielded
the best model performance for each of the three models
(Fig. 2).

The selected model architectures are trained on a NVIDIA
GeForce GTX 1050Ti GPU with a batch size of 64 for 1500
epochs. The python packages – Keras48 and TensorFlow49 –

are used to build and train the neural networks. The training
took around one second for each epoch.

3 Results and discussion
3.1 Comparison of the three model architectures

The three different GRU-based RNN model architectures
(Fig. 2) are trained as described in the previous section. We
performed a random search over a range of the
hyperparameter values, listed in Table 3, to determine the
optimal hyperparameters for the model using the weight and
bias tool.50 In order to test the performance of the fitted
models, the mean absolute error (MAE) is calculated for the
normalized variables in the validation and test set data. The
hyperparameter values with the lowest MAE values on the
validation data are shown in Table 4. The model
architectures with these corresponding hyperparameter
values are selected for further training and testing.

The predictive ability of the trained RNN architectures is
assessed by comparing their predictions with the test set. Note
that the test set data is never used during the development of
the RNN models, including the hyperparameter tuning. We

compare the three model architectures for the accuracy in
predicting the species concentrations and training and
prediction computational time. The latter is also compared
with that of solving the system of stiff ODEs associated with
the reference kinetic scheme.8

A total of 100 cases are randomly selected from the test
set and given as input to the RNN and compared with the
reference kinetic model to predict the species evolution for
five seconds in the PFR. The reference kinetic model is solved
using the stiff ODE solver, DVODE, which required an
average prediction time of around 252 s. Table 5 provides the
training time, prediction time, coefficient of determination
(R2), and MAE for the three RNN architectures described in
section 2.3.1. The training time increases with the number of
RNN model parameters, whereas the execution time is
comparable for all the models. A reduction of four orders of
magnitude in the execution time is achieved using the RNN
model compared to the reference kinetic model. Note that we
are using a reduced kinetic model developed from a detailed

Table 3 List of hyperparameters and their range over which the random
search is performed to optimize the hyperparameter values

Hyperparameter List of values

Dense layer neurons {64, 128, 512, 1024}
GRU units {64, 128, 512, 1024}
Initial learning rate {0.01, 0.001, 0.0001}
Learning rate decay rate {0.9, 0.99}
Learning rate decay steps {25, 50, 100}

Table 4 Three RNN architectures used in this work with the optimal
hyperparameter values for the corresponding models and the total
number of parameters

Layer Activation Output shape

Model 1

Input — (None, 28)
Repeat vector — (None, 100, 128)
GRU tanh (None, 100, 128)
Dense (output) Linear (None, 100, 27)
Total parameters: 64 155

Model 2

Input — (None, 28)
Dense1 ReLU (None, 128)
Repeat vector — (None, 100, 128)
GRU tanh (None, 100, 128)
Dense2 ReLU (None, 100, 128)
Dense3 (output) Linear (None, 100, 27)
Total parameters: 122 779

Model 3

Input — (None, 28)
Dense1 ReLU (None, 128)
Dense2 ReLU (None, 128)
Repeat vector — (None, 100, 128)
GRU tanh (None, 100, 128)
Dense3 ReLU (None, 100, 128)
Dense4 (output) Linear (None, 100, 27)
Total parameters: 126 491

Table 5 Training time for 1500 epochs, prediction time for 100 examples
from the test set, coefficient of determination (R2), and MAE on
normalized data for the selected RNN architectures

Model
architecture

Training
time (min)

Average model
prediction time (s) R2 MAE

Model 1 40 2.65 × 10−2 0.9985 15.16 × 10−3

Model 2 55 2.87 × 10−2 0.9997 11.14 × 10−3

Model 3 58 2.88 × 10−2 0.9998 9.10 × 10−3
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chemical mechanism. For the detailed mechanism as the
reference kinetic scheme, the reduction in the execution time
is expected to be much higher. For all the models, the R2

value is greater than 0.99, demonstrating the ability of even
the simplest RNN model to capture the temporal species
evolution. An increase in the model complexity also results in
a smaller MAE.

For further analysis of the performance of the three RNN
models, the MAE for the training, validation, and test sets,
varying residence time, and the individual chemical species is
shown in Fig. 3. Also evident from Table 5, the MAE is the
lowest for model 3. Fig. 3(a) shows that the MAEs for the
training, validation, and test sets are comparable, confirming
that the models are not overfitted. The MAE reported in this
section corresponds to the normalized data to present a
comparison across all species. The overall MAE for model 3 is
below 1%. We also show the MAE at each time in Fig. 3(b).
Clearly, the MAE is higher for the initial time (<0.5 s) than the
rest of the residence time. This behavior is attributed to the
low resolution (50 ms) of the training data during the initial
phase of the secondary reactions (<0.5 s) at higher reactor
temperatures. Model 3 provides the minimum MAE in the
entire residence time range, though the performance
improvement is especially significant in the first 0.5 s. Fig. 3(c)
shows the MAEs for all the input–output species. As expected,
model 3 provides the lowest MAE for all the species.

3.2 Model analysis and prediction

We select model 3 to keep the MAE around 1% or less for
every input–output species. The discussion in the rest of this
section is based on the utilization of model 3. Fig. 4 shows
the parity plots between the RNN (model 3) predictions and
the training, validation, and test set values of major gas and
tar species mass fractions at all the timesteps. The parity
plots for all the individual species are provided in Fig. S1–S3
in the ESI† and show excellent agreement between the model
predictions and the generated data sets. These results
demonstrate the accuracy of the RNN model.

As an application of the developed RNN model, we
predict the temporal evolution of the major reactant and
product species in the PFR. Only the species
concentrations under the initial conditions, reactor
temperature, and residence time are input to the RNN
model. Fig. 5 shows the comparison of the RNN
predictions and the test set data for a few randomly
selected examples from the test set. The performance at
three different temperatures is shown with the data
converted back to mass fraction units. These results
confirm the ability of the RNN model to predict the
temporal evolution of species concentrations for the
considered temperature (800–1000 °C) and residence time
(5 s). With the excellent match for test data, we also tested

Fig. 3 Comparison of the MAE for different RNN model architectures. (a) MAE for the training, validation, and test sets; (b) MAE at each time step;
(c) MAE for individual species; left: model 1, center: model 2, right: model 3.
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the RNN model for future predictions of five more seconds
(Fig. S4 in ESI†) to understand the function learned by the
RNN model. Note that all the original data using the
reference kinetic model is generated until five seconds
(hence, the lines end at 5 s). Still, we make model
predictions using the RNN for ten seconds. Interestingly
the model is qualitatively performing as expected even for

future predictions pointing to the suitability of the RNN
algorithm for time series data. We will explore this aspect
of the RNN models in our future studies.

Finally, we analyze the effect of the training data since the
availability of the training data plays a significant role in the
predictive ability of the RNN model for unseen data. For this
purpose, model 3 is trained separately for 500 epochs with

Fig. 4 Parity plots of major light gases and tar species for training, validation, and test sets and predictions of model 3.

Fig. 5 Comparison of the mass fraction profiles of the major product species obtained from model 3 (symbols) and test set (lines) at different
temperatures.
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different fractions of the entire training set. Fig. 6 shows the
variation in the MAE for the RNN model 3 trained with
different fractions of the training set while ignoring the
remaining data from the training set. The validation and test
sets remain identical for a fair comparison. The MAE
decreases continuously with the amount of training data
available, implying an increasing model accuracy. Moreover,
the validation and test set MAE is comparable to the training
set MAE in the entire range of the training data considered.
This observation illustrates that the RNN model is not
overfitted even for a smaller fraction of the training data and
is thus also suitable when less training data is available. Note
that even at 20%, the training data points are more than
twice the number of parameters for the model 3 architecture.

4 Conclusion

We demonstrate that the recurrent neural network (RNN)
algorithm is suitable for reducing the computational cost
and complexity of utilizing detailed chemistry in an ideal
reactor configuration. We focused on biomass gasification in
the freeboard region of a fluidized bed reactor as the target
application. The developed gated recurrent unit (GRU) based
RNN model can predict the temporal evolution of major
reactant and product species in a wide range of biomass
gasification conditions. To this end, we employ a kinetic
scheme reduced from a detailed kinetic model using an
automated reduction algorithm – DRGEP. Combining the
existing automatic reduction algorithms with RNN becomes a
powerful technique to develop high fidelity and
computationally fast design tools that can predict and
optimize complex conversion processes like biomass
gasification. Predicting the transient behavior of chemical
species during biomass gasification is a significant
achievement of this work. The developed technique could be
used for other reaction engineering problems where detailed
chemistry models are too expensive to use.

This work is a step towards reducing the current gap
between data science and realistic reaction engineering
problems. Future investigations can focus on integrating
detailed chemistry with non-ideal reactor models.

Code availability

The RNN model developed for temporal evolution of species
during biomass gasification and example data set are
available for download at GitHub at the following link:
https://github.com/CARE-IITM/RNN_biomass_gasification.
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