Kinetic and experimental study on the reaction of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3.3.1]nonane in nitric acid†
Abstract
The nitrolysis of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3.3.1]nonane (DPT) to prepare 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) in fuming HNO3 between −8 °C to −36 °C was tracked by 1H-NMR. It is found that DPT converted to 1-nitroso-3,5,7-trinitro-1,3,5,7-tetraazacyclooctane (MNX) immediately at the end of the feeding course; MNX was then gradually nitrolyzed to HMX. The latter reaction followed a pseudo-first order kinetics, and the selectivity of HMX was almost unaffected with the change in reaction temperature based on the kinetics study. The effects of water and N2O4 on this reaction were investigated and the results indicated that a small amount of water and N2O4 was beneficial to the generation of the intermediate product MNX. On the contrary, the presence of water and N2O4 hindered the conversion of MNX to HMX. Nitrosonium in the reaction system has two sources: one is from the nitrogen oxides such as N2O4 in fuming nitric acid; the other is from the redox reaction between nitric acid and formaldehyde, which was promoted by the H2O in fuming nitric acid. Based on the these results, the overall yield of the stepwise method for preparing HMX was up to 82.7% under the optimized reaction conditions.
- This article is part of the themed collection: 2019 Reaction Engineering in China