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Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting
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ability to facilitate the net removal of CO, from the atmosphere. However, despite this broad consensus and its
technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a
decade ago. Thus, in this paper we review the current state-of-the-art of CO, capture, transport, utilisation and
storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21
commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative
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Carbon capture and storage (CCS) is recognised as being vital to least cost pathways for climate change mitigation, and in particular the negative emissions

technologies (NETs) that are key to limiting warming to “well below” 2C. However, it has not yet been deployed on the scale understood to be required, owing to

a variety of technical, economic and commercial challenges. This paper provides a state-of-the-art update of each of these areas, and provides a perspective on

how to the discipline forward, highlighting key research challenges that should be addressed over the course of the next decade. Importantly, this perspective

balances scientific, policy and commercial priorities.

1 Introduction

This paper is the third installment in a series of publications over
several years in Energy & Environmental Science."” The first
(published in 2010) provided an introduction to CO, capture
technologies, with an overview of solvent-based chemisorption
(amines and ionic liquids), carbonate looping, oxy-fuel combus-
tion technologies, CO, conversion and utilisation (CCU) and multi-
scale process engineering of CCS." The second installment pre-
sented an update on developments in amine scrubbing, ionic
liquids, oxy-combustion and calcium looping. New topics added in
this second paper include chemical looping combustion, low
temperature adsorbents, direct air capture technologies, flexible
CCS operation, CO, transport and storage, and a historical over-
view of the UK and EU CCS policy and legislation.”

Distinct from the previous installments, this third paper sets out
to comprehensively review the state-of-the-art developments in CCS,
whilst also providing a holistic perspective on the role of CCS
technologies in mitigating anthropogenic climate change. We first
discuss the current status of CCS development and highlight key
CCS technologies that are near commercialisation phase (Section 2).
Then in Section 3 we contextualise CCS technology by considering its
representation and utilisation in integrated assessment models
(IAMs), challenging the view that it is a “bridging technology”, likely
to be relevant for only a few decades. We then go on to quantify and
qualify the role and value of CCS at a more granular level by
evaluating the way in which CCS interacts with national scale
electricity systems. This in turn helps us address the question of
what service CCS provides to the electricity system, with whom is
CCS competing and what technologies does CCS complement.

We then move on to consider the utility of CCS in decarbonis-
ing the industrial sector, with a focus on the key emitters - the
production of iron and steel, cement and oil refining and petro-
chemicals. Throughout, we aim to challenge the perception that
industrial CCS is uniquely costly, showing that, for example, the
cost of decarbonising the refining sector is essentially “lost in the
noise” of market fluctuations of the end use sectors.

Section 4 of the paper considers key post-combustion CCS
technologies in detail. The purpose of this paper is not to enumerate
the panoply of technologies that are available for capturing CO,.
Rather, we focus on solid- and liquid-phase sorbents, and attempt to
specify key research questions that need to be address in these areas.
We then select three particularly promising alternative technologies
for CCS in Section 5: chemical looping combustion, membranes and
ionic liquids.

It is well known that the thermophysical and kinetic proper-
ties of the sorbents used for CO, capture dictate both the
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capital and operating cost of the processes in which they are
used. For this reason, there is a concerted effort to rationally
design new sorbent materials, with the bulk of the effort in the
development of liquid sorbents, where available theories are
more readily applied. Thus, we present an assessment of SAFT-
based approaches to model and design new materials in
Section 6, with a focus on how efforts at the molecular and
process scales might be linked.

Before CO, can be safely and reliably sequestered, it must be
transported from source to sink. Whilst the majority of studies
assume pipeline transport, ship and rail transport are potential
alternatives; these other transport options are discussed in
Section 7. Similarly, despite the fact that CO, transport by
pipeline is exceptionally mature, the impact of capturing CO,
from a diverse set of power and industrial sources on the
quality of CO, being transported is sufficiently important to
warrant careful consideration.

The typical fate of CO, is to be sequestered, either in a saline
aquifer or, potentially, used for enhanced oil recovery (EOR). The
various challenges of operation, monitoring and verification of CO,
storage are discussed in Section 8, whereas Section 9 discusses
CO,-EOR. A potential alternative to the storage of CO, is its re-use —
the valorisation of CO, to produce marketable compounds. The
argument is sometimes made that this can both contribute to
climate change mitigation and provide an attractive revenue stream.
Section 10 discusses the potential for CO, conversion and utilisation
(CCU), also its merits and challenges are presented and considered.

In light of the global commitment achieved in Paris in
December, 2015,> we have extended this paper to include key
negative emissions technologies (Section 12); bioenergy with
CCS (BECCS) and direct air capture of CO, (DAC). These areas
are of particular importance owing to their potential impor-
tance and their controversy.

Despite the fact that there are currently 37 CCS projects
at various stages in the Americas, Europe, Middle East
and Asia-Pacific, CCS continues to languish as an “orphan
technology”.t With decades of technical experience across the
entire value chain, it is clear that it is not a lack of technical
expertise that is inhibiting the commercial deployment of CCS
technology. Thus, we have devoted a section of this paper to
consider “what needs to happen” from a commercial perspec-
tive (Section 13), drawing upon experience developed as part of
the UK’s most recent CCS commercialisation programme.’
Having provided this perspective from the private sector, we

+ Anecdotally attributed to Lord Ronald Oxburgh of the United Kingdom House
of Lords.
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then complement this with an international analysis of the
political economy of CCS (Section 14). Section 15 then con-
cludes with a proposed approach to evaluate the utility of a
“novel technology” and feasibility of particular targets by
identifying limitations that might prove to be showstoppers.

2 Current status of CCS development

Carbon capture and storage is expected to play an important role in
meeting the global warming targets set by the IPCC® and at COP21.>
There is a suite of technologies being developed for the capture,
transport, storage and utilisation of CO,. Typically, technology
development will progress in a series of scale-up steps: (i) bench
or laboratory scale, (ii) pilot-scale, (iii) demonstration scale, and lastly
(iv) commercial scale.” Fig. 1 summarises the current development
progress of different CCS technologies on the TRL scale.i As
illustrated by Fig. 1, there is congestion of technologies at the
TRL 3, TRL 6 and TRL 7 development phases. The progression of
a technology beyond TRL 3 requires further research funding,
whereas advancing technologies beyond TRL 5 and TRL 7 needs
significant financial investment and/or commercial interest (e.g;, in
the case of polymeric membranes). Further detailed discussion on
the technical development of the individual CCS technologies is
presented in the following sections of this paper. Here in this
section, we highlight the key CCS technologies that have reached
(or close to reaching) the commercial phase of development.

CO, capture

Chemical absorption (e.g., using aqueous amine solutions) has
been used to remove CO, from natural gas for decades,* thus,
it is considered to have a TRL of 9. This technology has been
utilised in two commercial-scale post-combustion capture facilities
in coal-fired power plants, Boundary Dam'>"* and Petra Nova.'*'>
Recent developments in polymeric membranes have enabled the
technology to successfully achieve demonstration scale (TRL 7).
The Polaris membrane is now available commercially and has
been used for CO, separation from syngas.'® Air Products are
licensing a polymeric membrane developed at NTNU, which
can be applied to coal-fired power plants and other combustion
processes (still under development)."” Thus, The first “commercial-
ready” direct air capture (DAC) plant recently opened in Hinwil,
Switzerland on May 2017,'® with the support of cost contributions
from the Swiss Federal Office of Energy. The plant supplies
900 tonnes of CO, annually to a nearby greenhouse.'® Capture
technologies that have also reached TRL 7 (demonstration)
(e.g., oxy-combustion coal power plants, adsorption) could also
potentially reached commercial status in the near future. In
contrast to post-combustion capture, integrated gasification
combined cycle (IGCC) with CCS has been less successful with
the Kemper County IGCC Project being suspended recently.”®
Southern Company’s decision to halt the project came after

i The “technology readiness level” (TRL) system provides a means of tracking the
status of technologies during their progression through different stages of
research and development (R&D). It is a nine-point scaling system used to
qualitatively evaluate the maturity level of a technology.®™°
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encountering a series of problems, these include failure to meet
the delivery deadline, severe technical issues and being majorly over
budget.*"**

CO, transport

The technologies for CO, transport are well established. There
are >6500 km of CO, pipelines worldwide (both on-shore and
off-shore), most of which are associated with EOR operation in the
United States.” The technology for CO, transport with ships is also
relatively mature.>® As these transport technologies are currently
being used in commercial applications, all have a TRL of 9.

CO, storage

As many commercial-scale CCS projects already use CO,-enhanced
oil recovery (EOR), 13 of the 17 operating commercial-scale CCS
projects, there is a significant amount of existing experience and
knowledge, which has enabled CO,-EOR to reach TRL 9. Similarly,
saline formations have been used for CO, storage at commercial-
scale project, including Sleipner CO, Storage, Snghvit CO, Storage
and Quest (on-shore and off-shore). In contrast, CO, storage by
enhanced gas recovery (EGR)* and storage in depleted oil and gas
fields have not reached operation at commercial-scale, thus, both
are still at the demonstration phase (TRL 7). Ocean storage and
mineral storage are still in the early phases of development.

CO,, utilisation

There are a number of facilities that utilise CO, for various
applications. These commercial CO, utilisation processes are
TRL 9 as they are mature technologies. Most are in the food and
beverage industry and some in chemical production (e.g:, urea,
methanol).>® Several projects utilise CO, for mineral carbona-
tion, for example, Searles Valley plant (US). In Saga City, Japan,
CO, capture from waste incineration is utilised for the cultiva-
tion of crops and algae.>” The CO, for each project is mainly
sourced from industrial processes (e.g., fertiliser production,
ammonia production, ethylene glycol plants), but some pro-
jects capture the CO, from power plant flue gas.>®

Commercial-scale CCS projects

Deployment of large scale CCS projects has been slow. Of the
37 major large scale CCS projects, 17 of these are in operation,
4 in construction and the remainder are in varying stages of
development.* As shown in Fig. 2 and 3, the majority of the
commercial large-scale CCS projects are located in the United
States. In terms of the project life cycle (i.e., identify, evaluate,
define, execute and operate), the US also has the greatest
proportion of projects in operation. For all but one of these
projects, enhanced oil recovery is the primary storage for the
captured CO,. Furthermore, the projects in the US have the
largest CO, capture capacity compared with projects in the rest
of the world: Century Plant captures 8.4 Mtco, per year, whereas
Shute Creek Gas Processing Facility capture 7 Mtco, per year.*

Although China has the second highest number of projects,
only one of these is in the execute phase (Yanchang Integrated
CCS Demonstration), and most are in early stages of development
(e.g, pre-feasibility, FEED studies). The CO, capture capacity of the

This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Current development progress of carbon capture, storage and utilisation technologies in terms of technology readiness level (TRL). BECCS =
bioenergy with CCS, IGCC = integrated gasification combined cycle, EGR = enhanced gas recovery, EOR = enhanced oil recovery, NG = natural gas.
Note: CO, utilisation (non-EOR) reflects a wide range of technologies, most of which have been demonstrated conceptually at the lab scale. The list of

technologies is not intended to be exhaustive.
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Fig.2 The CO, capture capacity of commercial-scale CCS projects
worldwide. The number labelled on each proportion of capture capacity
corresponds to the number of projects. Data from the Global CCS
Institute.*

projects in China range between 0.4-2 Mtco, per year. Europe has
the third highest number of large-scale projects, with two operational

This journal is © The Royal Society of Chemistry 2018

projects in Norway: the Sleipner CO, Storage Project captures 1
Mtco, per year, and Snehvit CO, Storage Project 0.7 Mtco, per
year. Of the five projects in Canada, three are in operation:
(i) Great Plains Synfuel Plant and Weyburn-Midale Project
(3 Mtgo, per year), (ii) Boundary Dam CCS Project (1 Mtco,
per year), and (iii) Quest (~1 Mtgo, per year). There are also
operating CCS projects in Brazil, Saudi Arabia and United Arab
Emirates with CO, capture capacities ranging from 0.8-1 Mtco,
per year. A fundamental requirement for the success of CCS
projects in all of these projects is the availability of safe
geological storage for the capture CO,. Furthermore, other
factors that can help bring CCS projects into operation phase
include secure financial funding, as well as supportive policy
and legislative frameworks.>®

3 Role and value of CCS

3.1 Climate change mitigation

Integrated Assessment Models (IAMs) have been at the heart of
the Intergovernmental Panel on Climate Change’s (IPCC)
assessment of pathways towards keeping average global warming
to less than 2 °C within this century.® They provide a means to

Energy Environ. Sci, 2018, 11, 1062-1176 | 1065


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ee02342a

Open Access Article. Published on 12 2018. Downloaded on 20/7/2024 06:19:48.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Energy & Environmental Science

| Operate

- Execute
g Define

| Evaluate

_ Identify

View Article Online

Review

S g ™~

Fig. 3 Commercial-scale integrated CCS projects around the world. Circle size is proportional to the CO, capture capacity of the project and the colour

indicates the lifecycle of the project. Data from the Global CCS Institute.*

explore the future role of particular technologies in meeting
climate targets such as renewables or nuclear.

CCS is one of the very attractive options in the IAMs mitigation
portfolios, as it has a number of advantages. First, CCS can be
integrated into existing energy systems without requiring large
amendments to the system itself. Clearly, renewable technologies
become more expensive at high penetration rates as a result of the
need for the infrastructure to accommodate intermittency.>
Furthermore, CCS is a viable option for the decarbonisation of
emission-intensive industries such as cement production (specific
industrial CO, capture costs are given in Section 3.3).>° And finally,
CCS can be combined with low-carbon or carbon-neutral bioenergy
(BECCS) to generate negative emissions,* i.e. while the cultivation
of the feedstock biomass sequesters about as much CO, as is
generated during the process of producing energy (bio-electricity or
biofuels), additionally capturing the latter leads to a withdrawal of
CO, from the atmosphere.*® BECCS has the double benefit of
mitigating emissions and generating energy, making it attractive
from the cost-optimisation perspective of an IAM.

3.1.1 CCS in integrated assessment models (IAMs). Based
on the model intercomparison study by Koelbl et al.,** some
general statements on the implementation of CCS in IAMs

1066 | Energy Environ. Sci, 2018, 11, 1062-1176

can be made. In some cases, CCS is modelled as a lump-sum
add-on cost to the technology it is combined with, while other
models separate capture costs and transport & storage and
a few separate all cost items. The latter modes obviously
give more detail about the CCS supply chain, which enables
modellers to also test the sensitivity of results to individual cost
components. All IAMs include at least the power sector for CCS and
many also cover industry and liquid fuels/hydrogen/gas production.
At least 1 sector is also eligible for BECCS (in- and excluding liquid
fuels), but many IAMs cover up to 3 sectors with BECCS. There is
quite a divergence with respect to the assumption about CCS
lifetimes, ranging from 30 to 60 years (partially depending on the
technology), though most of the models assume around 40 years. It
is also interesting in this light that there are some models not
allowing early retirement of CCS plants. Almost all of the IAMs of
the model intercomparison assume that CCS investment costs
develop according to an exogenous constant (often declining); only
two have endogenous learning.§

§ Endogenous learning occurs through learning curves in these models, i.e.
cumulative capacity determines the cost reductions, while other models assume
cost reductions according to an exogenously given factor.

This journal is © The Royal Society of Chemistry 2018
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Finally, concerning storage, while many models have a regional
differentiation of storage capacity, only a few models allow for
international trade in storage capacity. The maximum capacity
ranges between 3500 Gtgo, cumulative, and unlimited storage.
Transportation and storage cost (excluding capture cost) varied
between 10-300 US$ per ton CO,, depending on model and
storage type.** All of the models considered transportation and
storage costs at the lower end of this range. Models that also
considered high transportation and storage cost include the
POLES model (upper range value of $300 USD) and the GRAPE
model (upper range cost of $262 USD).**> The higher values for
storage cost are associated with options that were offshore,
enhanced coal bed methane (ECBM) and at greater depths
(e.g., 2000-3000m).>*

The IAMs thus differ widely in their deployment of CCS, yet the
model intercomparison, which is the basis for the numbers cited
above, could not explain the divergence of results on the basis of
model type, model assumptions or the way in which CCS has been
modelled. So either these are not the drivers of the difference or
their impact is confounded by other factors via system effects.
Individual model studies find that CCS contributes 50% more to
mitigation if technological learning is included (Riahi et al*’
cumulative storage of 150-250 Gtco,) and that the contribution
of CCS is sensitive to its cost in 2050 but not in 2100.*

3.1.2 Current status of CCS deployment. Even though CCS
thus plays a central role in IAM decarbonisation scenarios,
deployment has barely reached the levels indicated by the
projections of IAMs and roadmaps by the International Energy
Agency.*”*° Looking into the future, only a few of the Intended
Nationally Determined Contributions (INDCs), which countries
pledged at the climate negotiations in Paris, feature CCS as a
priority area.*®

More specifically, a recent report on CCS by the IEA*'
reviews the progress of the past 20 years and concludes that
the current rate of progress is falling short of what is required
to achieve climate goals. This is further underlined in the
analysis of the INDCs by Spencer et al.:*® national and global
scenarios based on the Paris pledges both show little deploy-
ment of CCS, with a share of CCS in electricity generation of
only 3% in 2030 for the USA, China, Japan and the European
Union. This is further exacerbated by the opposition against
CCS, which is motivated by perceived uncertainties concerning
its safety and the fear that it will serve to prolong the depen-
dence on fossil fuels and be a barrier to greater utilisation of
renewable power.*?*3

The next section will present the current state-of-the-art
knowledge on the role of CCS - and by extension BECCS - in
IAMs. The review will first focus on an model intercomparison
exercise of 18 IAMs>® (EMF279)) and then widen towards the low
stabilisation pathways in the IPCC’s Fifth Assessment Report®
(AR5). Secondly, an investigation of the scenarios consistent
with the more ambitious 1.5 °C climate goals adopted at COP21

9 27th round of the Energy Modelling Forum: https://emf.stanford.edu/projects/
emf-27-global-model-comparison-exercise.

This journal is © The Royal Society of Chemistry 2018
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in Paris (UNFCCC 2015), serves to underline the main insights
on CCS and puts specifically BECCS into the spotlight.

3.1.3 Integrated assessment modelling: the role of CCS in
meeting targets

State-of-the-art scenarios focusing on the 2 °C target. This
subsection draws on the results of the model intercomparison
presented in Koelbl et al.,*® as it is the most recent and most
comprehensive assessment specifically targeted at the role of
CCS in long-term climate change mitigation scenarios. The
study itself draws on the output of the 27th Energy Model
Forum (EMF), to which 18 IAMs contributed, thus providing an
excellent opportunity for a systematic comparison of results
with respect to the role of CCS.||

Koelbl et al.*® find that CCS plays an important role in all of
the models’ mitigation portfolios that were investigated. While
the range of CO, captured varied widely between models (up to
3050 Gtco, cumulatively until 2100 in some instances), none of
them captured less than 600 Gtgo,. Table 1 shows the ranges
across scenarios with different stabilisation targets and renew-
ables penetration by model type** based on Koelbl et al**
While the authors cannot easily explain the large range across
models by looking at individual model assumptions (see
Section 3.1.1 and Table 1), the fact that models consistently
capture a minimum of 600 Gtco, cumulatively until 2100 -
which would be more than half of the required emission
reductions consistent with a 2 °C pathway{ — does give a sense
for the magnitude and importance of the role of CCS in IAMs.

Furthermore, the authors do not find a decreasing role for
CCS over time. On the contrary, the CCS share in primary
energy is mostly higher in the second half of the century
compared to the first. In particular, the ranges for capture
rates in Koelbl et al®® are 5-23 Gtgo, per year in 2050 and
8-50 Gtgo, per year in 2100. This undermines the reputation
of CCS as a bridging technology and further underlines its
importance in IAMs, which seek to achieve ambitious climate
targets. The importance is further enhanced under pessimistic
assumptions about technological development of renewable
energy for a given climate target, indicating little flexibility
for the cost-optimal deployment of alternatives.

| It has to be noted, however, that in most cases, results were only available for
the full time horizon and scenarios considered for 12 models out of the 18 ones
that participated, thus the authors conclude that more research is needed to
substantiate some of the more detailed findings, which this section will not go
into.

** The technology-focussed models are engineering-based models which con-
sider a large number of energy technologies. They are typically used to calculate
the least cost approach to meet a given demand (e.g., emission reduction target).
In contrast, macro-econometric models consider production costs at an industry
level, offering more economic detail but lack structural detail. A hybrid model
combines both technology-based and macro-economic approaches.**

f1 To ensure global warming stays below 2 °C, the cumulative emissions from
1870 must remain less than 3650 Gtcoz.45 Of this quota, the total remaining
emissions from 2017 is estimated to be around 800 Gtcoz.‘“’"‘8 At current
emission rates, global emissions is expected to exceed the 800 Gtco, budget
within 20 years.*
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Tablel Cumulative storage for three scenarios of (1) a stringent concentration target, (2) less stringent concentration target, and (3) stringent target with
lower penetration of renewables (based on Koelbl et al.>). The three model types considered are the hybrid models (synthesis of the technology and
macro-economic approaches), macro-economic focussed models, and technology focussed models

Model type
Scenario Hybrid Macro-focus Tech-focus
1 Cumulative storage 450 ppm 730-2411 Gtco, — 353-1629 Gtco,
2 Cumulative storage 550 ppm 655-2962 Gtco, 1262 Gtco, 846-1686 Gtco,
3 Cumulative storage 450 ppm, limited renewables 625-2447 Gtco, —_ 1232-1366 Gtco,

Finally, the use of BECCS## in the models’ CCS fuel portfolio
increases with the stringency of the target. This is mostly
connected to substitution for coal and natural gas over time.
In response to the concerns with respect to large-scale cultiva-
tion of biomass for BECCS and the reservations concerning CCS
discussed above, the EMF models also produced a whole array
of scenarios limiting the use of both biomass and CCS.
Although these scenarios achieve the same target, they are
consistently characterised by higher costs, which is consistent
with earlier findings by e.g. Azar et al.*® and later confirmed by
the results of the IPCC’s AR5.°

In the absence of CCS, the total cost of climate change
mitigation increased by 138%, whereas limited bioenergy avail-
ability increased cost by 64%.§§° The integration of CCS into an
energy system provides a significantly greater reduction in CO,
emissions compared to wind technology.’® With limited CCS
and biomass availability, the deployment of nuclear, intermittent
solar/wind, interconnection and gas-fired power needs to increase,
consequently leading to higher total system cost.”" The increase in
mitigation cost is associated with the delay in technology
deployment® (e.g., more time to establish infrastructure), use of
more expensive technologies (nuclear), and maintaining grid
stability (e.g., intermittency requires the addition of “back-up”
capacity and part-load/flexible operation).>

In particular, the IPCC scenarios associated with a more
than even chance of achieving the 2 °C target are characterised
by average capture rates of 10 Gtgo, per year in 2050 and 25 Gtco,
per year in 2100 and cumulative storage of 800-3000 Gto, by the
end of the century.>® With respect to finding more expensive
mitigation strategies when CCS is not available, it is important to
note that under these circumstances, there are actually a sig-
nificant number of IAMs, which do not find a feasible solution at
all: Riahi et al.>* conduct a model intercomparison, where a third
of the IAMs do not find a feasible solution at 450 ppm without
CCS under optimal circumstances. If there is further delay in
mitigation, this share drops to a fifth. In other words, the target
is not just more expensive to reach, but not reachable at all,
given the current parameterisation of the models.

In addition, the AR5 scenarios have been under scrutiny
for their deployment of CCS in conjunction with bioenergy.
The 101 out of 116 scenarios leading to concentration levels of

+% The models currently only include BECCS and some of them afforestation.
Please refer to section for a discussion of this and to Table 2 for an overview of
alternative negative emission technologies.

§§ In contrast, limited nuclear and solar/wind availability only increased mitiga-
tion costs by 7% and 6%, respectively.®
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430-480 ppm CO,-equivalent (CO,eq.) (considered to be con-
sistent with a 66% probability of limiting warming to below
2 °C) require global net negative emissions between 2050 and
2100. About 50% of the scenarios feature BECCS exceeding 5%
of primary energy supply.*’

While these aspects of the IPCC scenarios have caused some
people to doubt the feasibility of achieving the 2 °C target (e.g
Peters®?), the role of CCS and particularly BECCS become even
more important in light of the increased level of ambition
following the 2015 Paris COP.>*

Towards 1.5 °C. What is currently available in terms of 1.5 °C
IAM scenarios is much less than what is presented above on
2 °C from the IPCC’s AR5. This subsection draws on work from
Rogelj et al.”® and Luderer et al.,>® which offer an assessment of
what is currently available on 1.5 °C.qq

The most outstanding feature that systematically distinguishes
the 1.5 °C from the 2 °C IAM scenarios examined in Rogelj et al.> is
that there is not a single pathway with a 50% probability of achieving
the target without overshooting it until 2100. That is, the average
global temperature increase will at some point exceed 1.5 °C, before
returning to this level at the end of the century.

This implies that much of the CO, emitted in the first half of the
century will need to be removed from the atmosphere again. In other
words, emissions have to be negative at some point. Indeed, the
analysis in Rogelj et al>® shows that there are no feasible 1.5 °C
scenarios without negative emissions. In particular, the cumulative
negative emissions are between 450 and 1000 Gtco, until 2100. This
is in stark contrast to some 2 °C scenarios, which do manage to
reach their target without carbon removals. Luderer et al.>® point
out that energy efficiency improvements can have this effect for
2 °C scenarios.

In the current IAMs, these negative emissions are primarily
achieved by the deployment of BECCS.| | This has triggered
a discussion reflecting on large concerns not only about CCS
(¢f discussion in Section 3.1), but also with respect to the
implications of the large amounts of biomass that would be
needed to achieve sufficient scales to reach the level of negative
emissions needed for ambitious climate change mitigation.
In an ex-post assessment of the amounts of negative emissions
through BECCS in the IPCC’s AR5, Smith et al.®" estimated the

€9 It has to be noted that these scenarios are characterised by different prob-
abilities than the 2 °C scenarios reviewed above, which means that the focus here
should be on the qualitative results and not a direct comparison of numbers.
||l There are a few that also consider large-scale affore