Halide perovskite photovoltaic-electrocatalysis for solar fuel generation
Abstract
Photovoltaic-electrochemical (PV-EC) fuel production is a promising technology that combines solar energy conversion and electrochemical catalysis to produce sustainable hydrogen and hydrocarbon from renewable sources. Halide perovskite solar cells with adjustable band gaps are attractive for PV-EC devices since their tailored photovoltages in tandem structures with other photovoltaic materials can boost electrochemical reactions without an external power supply. Herein, we mainly focus on halide perovskite photovoltaic-electrochemical fuel generation. The principles and design classification of PV-EC devices, as well as the band gap engineering of halide perovskites for solar cells, are presented. We explicate the mechanism of the oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction reaction, suggesting adequate material candidates of electrocatalysts for each reaction. Recent advances in electrocatalysts for water splitting and CO2 conversion, halide perovskite solar cells, and PV-EC devices for improving solar-to-fuel conversion efficiency are summarized. This review presents significant advances in PV-EC fuel production from a materials point of view, providing a groundwork for its component design.
- This article is part of the themed collections: FOCUS: Perovskite Materials and Devices and 2023 Inorganic Chemistry Frontiers Review-type Articles