Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions†
Abstract
Hydrogels have emerged as a landmark soft material for a wide range of applications such as in biomedical devices, soft robotics, artificial electronic skins, and the Internet of Things (IoT). To date, engineering hydrogels that simultaneously possess high stretchability (>3000%) and strong on-skin adhesion (>30 kPa) has not been an easy task. Generally, good stretchability is mainly dominated by the bulk interactions of hydrogels, whereas robust adhesion relies on the interfacial interactions of hydrogels with their surroundings. Here, we report a facile strategy to engineer an ultra-stretchable, highly adhesive and self-healable hydrogel, by virtue of tannic-acid-enabled dynamic interactions (TEDI) to fully substitute conventional covalent crosslinking. The TEDI strategy allows us to synchronously regulate both bulk and interfacial interactions to obtain exciting properties that outperform conventional hydrogels, including an extraordinary stretchability of over 7300%, remarkable self-healing abilities, and a robust on-skin adhesion of 50 kPa. With these intriguing merits, TEDI hydrogels are demonstrated to be a wearable strain sensor that accurately detect the motion of the human body. Moreover, our TEDI strategy unlocks new opportunities to design next-generation ionic hydrogels that may be valuable for applications in wearable electronic devices and healthcare monitoring.
- This article is part of the themed collections: Materials Horizons 10th anniversary regional spotlight collection: China, Materials Horizons Lunar New Year collection 2022 and 2021 Materials Horizons most popular articles