Synthesis and characterisation of tetranuclear ruthenium polyhydrido clusters with pseudo-tetrahedral geometry†
Abstract
Dicationic tetranuclear ruthenium octahydride [(Cp*Ru)4H8]2+ (5) with tetrahedral geometry was obtained by reaction of dinuclear ruthenium tetrahydride (Cp*Ru)2(μ-H)4 (1) with an excess of Brønsted acids, such as HBF4·OEt2, in toluene. Monocationic tetraruthenium heptahydride [(Cp*Ru)4H7]+ (7) was obtained by dropwise addition of a diluted acid to a rigorously stirred solution of 1 at ambient temperature. Dication 5 was converted into monocationic heptahydrido complex 7 in high yield by treatment with sodium methoxide or sodium hydride. The direct conversion of 5 into neutral hexahydrido complex (Cp*Ru)4H6 (8) was achieved in a highly efficient manner by treating 5 with LiAlH4 in tetrahydrofuran (THF). The conversion of 5 into 8 was reversible, and the addition of a Brønsted acid to 8 gave 5via the formation of 7 as an intermediate. Tetranuclear complex 8 was directly obtained from 1 by heating it in THF at 70 °C. Complex 8′ and tetraruthenium tetrahydride (CpEtRu)4H4 (10′), where 8′ and 10′ possessed η5-C5EtMe4 ligands instead of Cp* ligands, were mutually related by the elimination/addition of dihydrogen. The structures of 5, 7, 8, and 10′ were determined by X-ray diffraction, and the Ru4 core structure and the coordination mode of hydrido ligands were discussed based on density functional theory (DFT) calculations for model compounds where the methyl groups of Cp* ligands were replaced with hydrogen atoms.
- This article is part of the themed collection: Multimetallic complexes: synthesis and applications