Volume 186, 2016

Circular extinction of plasmonic silver nanocaps and gas sensing

Abstract

Chiral plasmonic nanostructures exhibit strong rotatory optical activity and are expected to enrich the field of metaoptical materials. Potential applications of chiroplasmonic nanostructures include circular polarizers, optical polarization detectors, asymmetric catalysts, and sensors. However, chiral plasmonic materials require subwavelength structural control and involve laborious chemical or lithographic procedures for their manufacturing. Moreover, strong rotatory activity of subwavelength structures whose chirality was imparted by microfabrication, has been obtained for the red and infrared parts of the spectrum but faces new challenges for the blue and violet spectral ranges even with plasmonic materials with plasmonic bands in the 200–400 nm window. In this study, we address this problem by preparing chiral subwavelength nanostructures by glancing angle sputtering of metallic silver on ZnO nanopillar arrays. Silver deposition in two different planes is a convenient method for preparation of silver chiroplasmonic nanocaps (Ag CPNCs) with controlled asymmetry. Circular dichroism spectroscopy was used to examine the circular extinction for the left-handed nanocaps (L-CPNCs) with understanding that not only circular dichroism but also many other optical effects contribute to the amplitude of these bands. The pillared silver films exhibit circular extinction in the violet area of the electromagnetic spectrum. Partial oxidation of Ag to AgxO causes the absorption and corresponding circular extinction band obtained using a conventional CD spectrometer at 400–525 nm to increase and shift. This optical material may be used to detect oxygen and extends the spectrum of application of chiroplasmonic materials to gas sensing.

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
07 ⵛⵓⵜ 2015
Accepted
06 ⵏⵓⵡ 2015
First published
06 ⵏⵓⵡ 2015

Faraday Discuss., 2016,186, 345-352

Circular extinction of plasmonic silver nanocaps and gas sensing

J. Li and Nicholas. A. Kotov, Faraday Discuss., 2016, 186, 345 DOI: 10.1039/C5FD00138B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements