Recent advances and strategies of electrocatalysts for large current density industrial hydrogen evolution reaction
Abstract
The urgent demand for sustainable energy resources has boosted research into highly efficient electrocatalysts for the hydrogen evolution reaction (HER). However, the majority of reported catalysts have only been evaluated under small current density (10 mA cm−2) and acidic conditions. In contrast, the industrial standard of HER requires a substantially higher current density (at least 1000 mA cm−2) and favors an alkaline medium. Therefore, increasing efforts on HER electrocatalysts have been shifted to fulfill the requirements for driving HER at large current density with extremely high durability under alkaline conditions, as well as the facile large-scale fabrication of the HER electrocatalysts and electrodes. This review will briefly introduce the features and challenges in industrial HER, including the requirements, benchmark protocols, and parameters, and distinguish the key differences from common lab-level evaluations. Afterward, the recent progress in industrial HER electrocatalysts will be presented, organized mainly by material selections, and will focus on the performance, durability, special fabrication techniques, and brief explanations of mechanisms. Finally, the future outlook and perspectives about industrial HER electrocatalysts are discussed. This review will supply significant insights into the future development of practical HER electrocatalysts.
- This article is part of the themed collections: Inorganic Chemistry Frontiers Emerging Investigator Series 2022–2023, 2023 Inorganic Chemistry Frontiers Review-type Articles and 2023 Inorganic Chemistry Frontiers HOT articles