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Dynamic osmocapillary phase separation
at contact lines

Qihan Liu * and Luochang Wang

When a drop of liquid is placed on top of a swollen solid, if the liquid is immiscible with the solvent of

the swollen solid, the surface tension near the contact line can pull the solvent out from the solid,

leading to a phase separation that converts the classical three-phase contact line into a four-phase

contact zone. This phase separation can significantly affect the wetting properties of the swollen solid

and the effect is known to be time dependent. This paper develops a dynamic osmocapillary model

which predicts that the size of the phase separation increases with time, following the scaling relation of

t0.32. The prediction agrees well with existing experiments.

1. Introduction

Osmocapillary phase separation is a phenomenon where the
surface tension pulls the solvent out from a swollen solid.1–5

Here the swollen solid can be a hydrogel or a silicone elasto-
mer, where the corresponding solvent would be water or
unreacted silicone chains. When an immiscible liquid droplet
sits on top of the swollen solid, the surface tension near the
contact line can cause osmocapillary phase separation (Fig. 1).
This phase separation can alter the wetting behavior,6–11 which
in turn affects applications such as coating, adhesion, anti-
fouling, lubrication, etc.12 The migration of the solvent out of
the swollen solid is limited by the slow transport through the
pore space of the swollen solid. Consequently, osmocapillary
phase separation is often accompanied by noticeable time-
dependent wetting behaviors. Existing observations include
the sudden transition in droplet rolling speed and rate-
dependent and time-dependent contact line deformation.13–16

Existing studies often model osmocapillary phase separa-
tion as an elastocapillary effect,6,7,15–18 i.e., the formation of the
solvent phase is driven by surface tension and limited by the
elasticity of the swollen solid. Then the flux towards the phase

separation scales as J � lEC
� ffiffi

t
p

, where lEC = g/m is the elasto-
capillary length, with g the surface tension and m the shear
modulus of the swollen solid.15 Correspondingly, the size of
phase separation grows with p t1/2.18 Alternatively, Cai et al.
developed a phenomenological model that assumes the phase
separation has a free energy quadratic in the volume of phase
separation.13 The model predicts no power law asymptote.
In an earlier paper, we have shown that the equilibrium

configuration of such phase separation at contact lines can
be accurately predicted by the osmocapillary theory,5 which
provides a framework to rigorously model the dynamics of
phase separation at contact lines without phenomenological
assumptions or handwaving scaling arguments. This paper
develops the dynamic osmocapillary model, which predicts
that the size of phase separation grows with p t0.32 when
the associated elastic deformation is linear. This power law is
quantitatively verified against existing experiments.

2. General osmocapillary model
polymeric gels

The migration of the solvent in a swollen solid is governed by
the theory of poroelasticity. In polymeric gels, a nonlinear
poroelastic model is often required to account for the large
deformation. Here we adapt the model developed by Hong et al.19

However, Hong’s original formulation did not correctly identify the
osmotic pressure. We will fix this issue and discuss the correct
definition of osmotic pressure in a nonlinear poroelastic model.

A poroelastic model requires an elastic part describing the
deformation and a kinetic part describing the solvent migration.

Fig. 1 Surface tension near the contact line can pull the solvent out from
the swollen solid, causing osmocapillary phase separation.
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The Flory–Rehner model is commonly used to describe the elastic
response:

sij ¼
NkBT

detF
FjKFiK � dij
� �

� pdij : (1)

Here sij is the Cauchy stress tensor, FiK is the deformation
gradient tensor relative to a stress-free dry reference state,
det F is the determinant of FiK reflecting the volume change
of the gel, N is the number of load-carrying polymer chains per
unit of the reference volume, kBT is the product of Boltzmann
constant and thermodynamic temperature. The reference state
is taken as the dry polymer network. Since the shear moduli of
gels (o10 MPa) are orders of magnitude lower than their bulk
moduli (BGPa), gels deform incompressibly in most cases.
Consequently, there will be a hydrostatic pressure p that cannot
be determined from the deformation using a constitutive
model but rather must be determined from the boundary
conditions.19 Following the incompressible assumption, det F
and the local concentration of the solvent C is connected
through:19

det(F) = 1 + CO. (2)

Here C is the number of solvent molecules per dry volume of
the polymer network, O is the average volume per solvent
molecule. The migration of the solvent in gel is often treated
as diffusion:

ji ¼ �Mij
@m
@xj

: (3)

Here ji is the diffusion flux vector, Mij is the mobility tensor,
which generally depends on the deformation. m is the solvent
chemical potential in the solid. m reflects the coupling between
elasticity and the driving force for diffusion. According to the
Flory–Rehner model:19

m ¼ kBT log 1� 1

detF

� �
þ 1

detF
þ w

detFð Þ2

" #
þ pO: (4)

Here w is a dimensionless parameter describing the mixing
enthalpy.

In the study of osmocapillary phase separation, it is neces-
sary to introduce the concept of osmotic pressure P. In the
context of physical chemistry, the osmotic pressure of a stress-
free solution is defined as the pressure that need to be applied
on the solution to resist the solvent absorption across a semi-
permeable membrane (Fig. 2A).20 In the context of the swelling
of a polymeric gel, the osmotic pressure naturally generalizes to
the pressure to prevent solvent absorption into the gel (Fig. 2B).
This compressive pressure required to constrain the gel from
swelling is the foundation of measuring gel osmotic pressure
through the constrained swelling test.21 Since both gel and
solvent are incompressible in common practical conditions,
applying a hydrostatic tension of the magnitude P over the
whole system will not affect the thermodynamic equilibrium.
Consequently, osmotic pressure P is also the tension in the
solvent to resist the absorption of the gel (Fig. 2C). Take the

stress-free ambient solvent as the reference state for chemical
potential m = 0. Since solvent molecules are treated as incom-
pressible, moving one molecule from the stress-free reference
state to the solvent under tension P induces a change in free
energy of �PO. Then the chemical potential in the solvent of
Fig. 2C is:

m = �PO. (5)

This definition generalizes the osmotic pressure P to any
stress state. Eqn (1)–(5) form the complete constitutive model
for the poroelastic media.

There are six interfaces in the system: solid–liquid, solid–air,
solid–solvent, solvent–air, solvent–liquid, and liquid–air. On
each interface, the interfacial tension leads to the capillary
pressure pC. Following the Young–Laplace equation:22

pC = gk. (6)

Here g is the interfacial tension of the corresponding inter-
face, k is the sum of the two principal curvatures. Since the
solvent migration is slow, the solvent in the osmocapillary
phase separation is always under static equilibrium, i.e. under
uniform hydrostatic pressure pC. To be consistent with the
assumption of incompressible gel, the solvent must also be
treated as incompressible, then the chemical potential in this
solvent phase is:

m = pCO. (7)

Combine eqn (7) with eqn (5) we have �pC = P on the solid–
solvent boundary, meaning that the capillary pressure pulling
the solvent out from the solid and the osmotic pressure pulling
the solvent into the solid balances each other. To determine the
size of the osmocapillary phase separation, Neumann’s law
must be satisfied at the three-phase contact lines:23,24

g1n1 + g2n2 + g3n3 = 0. (8)

Here 1, 2, 3 refer to the three interfaces at the contact line. ni

is the unit vector normal to the contact line while tangent to the

Fig. 2 The definition of osmotic pressure. (A) In a solution, the osmotic
pressure P is defined as the pressure on the solution to resist solvent
absorption. (B) In a polymeric gel, P is defined as the pressure on the gel to
resist solvent absorption. (C) Since both solvent and gel are practically
incompressible, P is also the tension in the solvent to resist absorption.
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corresponding interface. Since the stress state and chemical
potential of the solvent in the osmocapillary phase separation
can be explicitly written out, this solvent phase does not need to
be explicitly modeled. One only needs to apply eqn (6) as the
traction boundary condition and eqn (7) as the chemical
potential boundary condition on the solid phase.

3. Linearized osmocapillary model for
polymeric gels

In addition to pulling the solvent out from the gel and resulting
in osmocapillary phase separation, the surface tension at the
contact lines can also deform the gel resulting in elastocapillary
deformation.25,26 Osmocapillary phase separation and elasto-
capillary deformation are competitive phenomena. As the sur-
face tension tries to deform a solid surface, the deformation
can happen through either deforming the solid, i.e. elasto-
capillary deformation, or pulling out the solvent, i.e. osmoca-
pillary phase separation. When one phenomenon is significant,
the other is negligible.2–5 Consequently, if we focus on the cases
of significant osmocapillary phase separation, we can assume
small deformation to linearize the problem.

Take an isotropic swollen state as the reference state,
the general incompressible nonlinear poroelastic constitutive
relation (eqn (1)–(5)) can be linearized into (Appendix 1):

sij ¼ 2G eij �
ekk
3
dij

� 	
þ Kekkdij þ P̂dij : (9)

Here eij is the linear strain tensor, G and K are the shear and
bulk moduli with the expressions:

G ¼ NkBT

detFð Þ1=3
; (10)

K ¼ NkBT
3� detFð Þ2=3

3 detF
þ kBT

O
1

detF� 1
� 1

detF
� 2w

detFð Þ2

" #
;

(11)

P̂ is the change in osmotic pressure relative to the isotropic
swollen reference state. P̂ is equivalent to the pore pressure in
the classical linear poroelastic model but with a negative sign.27

The isotropic swollen reference state is stress-free, with the
corresponding reference osmotic pressure:

P0 ¼�
NkBT

detF
detFð Þ2=3�1

� 	

� kBT

O
log 1� 1

detF

� �
þ 1

detF
þ w

detFð Þ2

" #
:

(12)

Eqn (2) becomes:

ekk = O(c � c0) (13)

Here c0 is the solvent concentration in the undeformed
swollen state. Since the reference state is isotropic, the mobility

tensor Mij should also be isotropic, then the law of solvent
migration (eqn (3)–(5)) becomes:

ji ¼MO
@P̂
@xi

(14)

Here M is the mobility. At the same time, Darcy’s law
predicts that the volumetric flux of the solvent q follows:

qi ¼
k

Z
@P̂
@xi

(15)

Here k is the permeability of the porous media, which
generally depends on the swelling ratio.28 Z is the viscosity of
the solvent. Since qi = jiO, eqn (15) and (16) require:

k

Z
¼MO2: (16)

The linear poroelastic model has two dimensionless groups,
K/G governs the compressibility of the network when solvent
can drain freely. Note that this compressibility does not conflict
with the incompressibility of the solvent and the undrained gel.
P0/G governs the capability for osmotic pressure to deform
the solid. Here P0 is the osmotic pressure in the undeformed
swollen state. If P0/G c 1, it is easier to deform the solid rather
than pulling out the solvent, then osmocapillary phase separa-
tion will be insignificant. P0 can be directly written out.
Eqn (10)–(12) connect K/G and P0/G in the linear poroelastic
model with the parameters of the nonlinear Flory–Rehner
model. Here the parameters of the Flory–Rehner model
form three dimensionless groups: the swelling ratio det F, NO
describes the relative strength of network elasticity and poly-
mer–solvent mixing, and w describes the relative strength of the
enthalpy and entropy in polymer–solvent. We plot K/G and P0/
G as a function of swelling ratio det F for common ranges of NO
and w from the dry state to the fully swollen state (Fig. 3A
and B). At a low swelling ratio, K/G c 1, indicating the network
is nearly incompressible even when the solvent is allowed to
drain freely. As the gel approaches the fully swollen state, K/G
B 1. At a low swelling ratio, P0/G c 1, meaning that it is easier
to deform the gel than pulling the solvent out. Consequently,
osmocapillary phase separation will be negligible. As the gel
approaches the fully swollen state, P0/G - 0, meaning that it is
easier to cause osmocapillary phase separation rather than
deforming the gel. Consequently, elastocapillary deformation
will be negligible. If we plot K/G against P0/G (Fig. 3C), we see
that when osmocapillary phase separation is significant
(P0/G o 1), K/G is nearly a constant on the order 1. Since
Flory–Rehner model could not accurately predict the swelling
behavior of real polymer networks,21 the exact value of K/G
predicted by the model may not be accurate. Nevertheless, the
basic trends and the order-of-magnitude behavior in Fig. 3
should be trustable.

The osmocapillary model has two intrinsic length scales, the
osmocapillary length lOC = g/P0 and the elastocapillary length
lEC = g/G.2–5 Osmocapillary length represents the length scale
over which surface tension can cause osmocapillary phase
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separation. Elastocapillary length represents the length scale
over which surface tension can significantly deform the swollen
solid. These two length scales lead to two poroelastic relaxation
times, the osmocapillary relaxation time, tOC = lOC

2Z/kG, and
the elastocapillary relaxation time tEC = lEC

2Z/kG. Here kG/Z has
the dimension of diffusivity. These length and time scales will
be used to normalize the simulation results in the following
sections.

4. Numerical model of osmocapillary
phase separation at contact lines

We will numerically analyze the osmocapillary phase separation
at contact lines (Fig. 1), which is the most common configuration
to observe osmocapillary phase separation.6,7,16–18 We make two
assumptions to simplify the problem:

(1) In most cases, the size of phase separation is much
smaller than the size of the droplet and the dimension of the
porous solid. Then the curvatures of the droplet and the solid
are negligible at the scale of phase separation. The phase
separation can be modeled as a 2D plane-strain problem on a
flat semi-infinite porous media.

(2) We limit the discussion to the cases where osmocapillary
phase separation dominates over the elastocapillary deforma-
tion (P0/G o 1), the deformation in the gel is negligible. Then
the swollen solid surface remains flat as osmocapillary phase
separation grows. There is no capillary pressure on the flat
surface. Also, the small deformation ensures that the linearized
model can be used.

Under these two simplifications, the geometry of osmo-
capillary phase separation can be analytically determined
(Appendix 2), with the width w = Cwg/pC, height h = Chg/pC,
and volume V = CV(g/pC)2 connected to the solvent–air inter-
facial energy g and the capillary pressure in the solvent phase
pC. Here Cw, Ch, and CV are constants that depend on the
interfacial energies of the six interfaces involved. These rela-
tions allow us to track a single variable pC for the evolution of
osmocapillary phase separation.

The evolution of the osmocapillary phase separation is
governed by the conservation of mass:

dV

dt
¼
ðw
0

qydx (17)

Here the integration is over the boundary of the swollen
solid covered by osmocapillary phase separation. Using the
relation between w, h, V, and pC, eqn (17) can be converted into
an ordinary differential equation of the capillary pressure pC:

�2CV
g2

pC3
dpC

dt
¼
ðCwg=pC

0

qydx (18)

In eqn (18), if we rescale time with t̂ = t/CV and length with
x̂ = Cwx, the factors CV and Cw are gone, meaning that these
geometry-dependent factors do not affect the nature of the
relaxation. Without loss of generality, we set CV = Cw = Ch = 1 in
our study.

Note that eqn (17) only describes the growth of an existing
osmocapillary phase separation. It does not describe the
nucleation of an osmocapillary phase separation from a flat
surface. Consequently, an initial phase separation width w0

must be introduced in the simulation as an initial condition.
This is equivalent to placing a line of solvent on a piece of
homogeneous gel at t = 0. This initial condition will affect the
dynamics of phase separation when the current phase separation
width w B w0. When w c w0, the effect of initial condition is
negligible, and the simulation reflects the universal dynamics of
osmocapillary phase separation.

We implement the above problem in the finite element analysis
package COMSOL 6.3. The simulation domain and boundary
conditions are schematically represented in Fig. 4A. Taking
advantage of the symmetry, we only simulate half of the
poroelastic media, where the capillary pressure is applied over
the surface from 0 to w/2. Note that the osmocapillary phase
separation on top of the solid phase may not be symmetric, as
schematically illustrated in Fig. 1B. However, since we assumed
small deformation, the solvent phase only applies a uniform
pressure over a segment of the flat surface of the solid phase.

Fig. 3 The correspondence between nonlinear and linear poroelastic models. (A) How the network compressibility K/G depends on swelling.
All curves end at the fully swollen states. (B) How the osmotic pressure depends on swelling. All curves end at P/G = 0 when the gel is fully swollen.
(C) The K/G–P0/G relation shows that K/G B 1 when the osmocapillary effect is significant (P0/G o 1).
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The uniform pressure over flat surface is symmetric. Note that
at the isotropic swollen reference state, the solid is stress-free
but has a finite osmotic pressure. Consequently, over the
pressure boundary, the stress driving the deformation is
the total capillary pressure (eqn (6)) relative to 0 stress. The
pressure driving the solvent migration is the difference
between the capillary pressure and the reference osmotic
pressure P0. And this pressure difference can be implemented
either by adjusting the reference pressure in the bulk or the
applied pressure on the boundary. We implemented it by
adjusting the reference pressure because the other implemen-
tation is numerically less stable in COMSOL.

We set the size of the simulation domain L c w to approxi-
mate semi-infinite space. Since we assume small deformation,
the flat surface remains flat, there is no capillary pressure on
the boundaries. The growth of osmocapillary phase separation
implies that the width of the pressure boundary condition, w/2,
needs to widen during the simulation. We implement this time-
dependent boundary condition by deforming the mesh relative
to the solid domain. A sloped line from the edge of the phase
separation to the bottom of the simulation domain is defined
as a moving boundary to deform the mesh. This line is shifted
uniformly rightward during the simulation to represent
the growth in the phase separation width w (Fig. 4B). The line
ensures that the mesh is uniformly stretched and compressed
on both sides. In contrast, if we only shift the boundary point,
the mesh will be locally distorted.

The governing equations of the swollen solid outlined in
Section 3 are implemented using the built-in poroelasticity
module. The changing width of osmocapillary phase separation
is modeled as a moving boundary using the deformed geometry
module. The evolution equation of the osmocapillary phase
separation (eqn (18)) is implemented through the global ODE
and DAE module. The domain is discretized with quadratic
triangle elements for all modules. We set the element size to

be w0/6 at the edge of the osmocapillary phase separation. The
element gradually coarsens to 20lOC far from the region of
osmocapillary phase separation. The simulation is regularly
remeshed to avoid element distortion associated with the
moving boundary (Fig. 4B). We set w0/2 = 10�3lOC at t = 0 as
the initial condition. An example simulation file is provided as
SI. For this initial phase separation size, the capillary pressure
pC will be 103P0, which can lead to large deformation at short
time scales. At long time scales, P0/G o 1 ensures small
deformation. We maintain the linear poroelastic treatment at
all time scales so that any deviation from the model indicates
the nonlinear effect. We perform the simulation from t =
10�5tOC to t = 105tOC. We limit the first time step to be much
less than the relaxation time associated with w0, w0

2Z/kG, to
accurately resolve the initial response. The simulation domain
size is fixed to L = 300lOC, which ensures that the osmotic
pressure P in the swollen solid is negligibly affected (o1%) by
the solvent removed by osmocapillary phase separation. In the
true semi-infinite limit, P should not be affected by the phase
separation. Recall that w = Cwg/pC and pC = �P at equilibrium,
then o1% change in P implies o1% error in w compared to
the semi-infinite limit.

5. The growth dynamics of
osmocapillary phase separation

We first compare the simulation of different P0/G o 1 at fixed
K/G = 1, consistent with the Flory–Rehner model in Fig. 3 by the
order of the magnitude. If we use osmocapillary length lOC =
g/P0 and osmocapillary relaxation time tOC = lOC

2Z/kG for
normalization (Fig. 5A), the results show that cases with
different P0/G approaches the same equilibrium osmocapillary
phase separation size, indicating that the equilibrium phase
separation size is governed by the osmocapillary length lOC as
expected. The case with larger P0/G reaches equilibrium faster
because a higher P0 means a steeper gradient qP/qxi can form
in the solid, which results in a larger flux qi according to
eqn (14), and a larger flux means a faster growth of the
osmocapillary phase separation.

If we normalize the results using elastocapillary length lEC =
g/G and elastocapillary relaxation time tEC = lEC

2Z/kG, we see
that all cases follow the same relaxation asymptotic at short
time (Fig. 5B), indicating the relaxation dynamics is indepen-
dent of the stress-free osmotic pressure P0. Relaxation at the
short time scale follows the power law w p t0.32. This power law
can be interpreted through the following scaling analysis. Here
we use ‘‘p’’ to indicate ‘‘proportional to’’. Since V p w2,
eqn (17) leads to:

wdw p wqydt. (19)

Recall eqn (15), qy p qP/qg. We can estimate the difference
in P by the capillary pressure g/w and the length scale of
diffusion as w, then qP/qg p g/w2. That is:

qy p g/w2. (20)

Fig. 4 (A) The schematic of the simulation setup. Only the swollen solid is
simulated. The interaction with the solvent phase is reflected through the
pressure boundary condition (red). (B) Snapshots of the simulation show-
ing how the moving boundary (thick black line) is shifted horizontally to
represent the widening of the osmocapillary phase separation. Thin solid
lines represent the element boundaries. Remeshing was performed
between 10�5tOC and 10�4tOC. evol is the volumetric strain, which in the
incompressible case represents the volume of solvent exchange. K/G = 1.
P0/G = 10�3.
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Combining eqn (19) and (20), we can integrate to:

w3
p t. (21)

This corresponds to w p t0.33. The difference between t0.33

and t0.32 could be due to the negligence of the inhomogeneous
flux field in the estimation. This is scaling is different from the
classical scaling of Fickian diffusion,29 which predicts a t0.5

power law for increasing length scales. The difference between
t0.33 and t0.5 is caused by the evolving boundary pressure and
boundary width in osmocapillary phase separation. Under this
normalization, the difference in equilibration time is more
significant compared to Fig. 5A. This is because under this
normalization, higher P0/G also implies a smaller volume
of equilibrium phase separation V0 p (g/P0)2 = lOE

2(P0/G)�2

to diffuse out from the solid.
Next, we compare the simulation of different K/G with fixed

P0/G = 10�2. It turns out that the compressibility of the polymer
network only weakly affects the relaxation of osmocapillary
phase separation (Fig. 5C), indicating that the osmocapillary
relaxation time tOC = lOC

2Z/kG is a good time scale for normal-
ization. When K/G is varied between 0.1 to 10, there is only
about 10% change in the osmocapillary phase separation size w
at a fixed time t. Note that the hydraulic diffusivity due to
poroelastic effect, D = (K + 4G/3)k/Z, is sensitive to K/G.30

However, while a higher network bulk modulus K leads to
faster diffusion, it also limits the volumetric change of the
swollen solid. Then a gentler gradient of solvent content slows
down the solvent diffusion. Since the total volume of osmo-
capillary phase separation is not affected by K/G, these two
effects largely cancel out so that osmocapillary relaxation time
is insensitive to K/G.

6. The elastic deformation induced by
osmocapillary phase separation

Unlike the growth of osmocapillary phase separation, which appro-
aches a size-independent behavior in the limit of semi-infinite

space, the elastic deformation induced by osmocapillary phase
separation keeps increasing with the domain size. This
size dependence is a well-established behavior of a linear
elastic semi-infinite space subject to a surface pressure
distribution.31 Here we will not discuss the dependence on
the domain size and will simply fix L = 300lOC. We take the
difference of the upward displacements between the top-left
and top-right corners of Fig. 4 in simulation to characterize the
elastic deformation induced by osmocapillary phase separa-
tion. This difference represents the deformation under the
osmocapillary phase separation relative to the far field. We
denote this difference with symbol H.

We first compare the simulation of different P0/G at fixed
K/G = 1. Here normalizing using the osmocapillary length lOC =
g/P0 is equivalent to normalizing using the simulation domain
size because we fix L = 300lOC. We see the higher P0/G leads to
larger elastic deformation (Fig. 6A). By linear elasticity, the
displacement is linearly proportional to P0/G. If we further
normalize H with P0/G, we see all cases converge at the short
and long time scales (Fig. 6B), corresponding to the undrained
and drained limits. Here the case of P0/G = 10�3 slightly
deviates from the other cases at the drained (long-time) limit
because the magnitude of H is so small before normalization
(recall Fig. 6A) that the slight deswelling of the solid due to
osmocapillary phase separation becomes non-negligible. If the
comparison were done using an even larger simulation
domain, the deviation should disappear. At the intermediate
time, all cases show H first decreases then increase. This is
because initially osmocapillary phase separation locally drains
solvent thus causing temporary deswelling. Near equilibrium,
osmocapillary phase separation ceases to pull out solvent. Then
surrounding solvent can replenish the local deswollen region.
The slower the transport of the solvent, the more significant the
dip in H. Indeed, we see more significant dip for cases of lower
P0/G, which is consistent with the slower relaxation observed at
lower P0/G in Fig. 5.

Next, we compare the simulation of different K/G with fixed
P0/G = 10�2. Here the undrained limit at short time scale is
unaffected by network compressibility (Fig. 6C). Only the

Fig. 5 How the width of osmocapillary phase separation increases with time (A) fixing K/G = 1, normalization with osmocapillary length lOC = g/P0 and
relaxation time tOC = lOC

2Z/kG shows that the equilibrium osmocapillary phase separation size is governed by lOC. (B) Fixing K/G = 1, normalization with
elastocapillary length lEC = g/G and relaxation time tEC = lEC

2Z/kG shows that the relaxation dynamics is unaffected by P0/G. (C) Fixing P0/G = 10�2,
results show that network compressibility has little affect on the relaxation dynamics.
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drained limit at long time scale is affected. It shows that the
more compressible the network is, the easier it is to deform
the solid in the drained limit. Also, the less compressible the
network is (higher K/G), the less dip in H in the intermediate
time scale. If the network is fully incompressible, there would
be a monotonic drop in H with time, reflecting the decreasing
capillary pressure as the size of osmocapillary phase separation
increases.

7. Comparison with experiments

We compare the simulation results with the experimental data
reported by Cai et al.13 Cai et al. synthesized silicone elastomer
swollen in silicone oils and used confocal microscopy to track
the evolution of osmocapillary phase separation around a
glycerol droplet. Both the swelling ratio of the elastomer and
the molecular weight of the silicone oil have been varied to
study their effect on osmocapillary phase separation. Their
experiments showed that a less swollen elastomer leads to a
smaller equilibrium volume of osmocapillary phase separation
and faster relaxation. Since a less swollen elastomer has a
higher osmotic pressure P0, the observation qualitatively
agrees with our prediction that equilibrium osmocapillary
phase separation size scales with g/P0 and a higher P0/G leads

to faster relaxation (Fig. 5). Interested readers can refer to their
original paper for these qualitative agreements. However, since
the swelling-dependent osmotic pressure P0 and permeability k
were not measured, quantitative comparison of these trends is
not possible.

To verify the w p t0.32 scaling (Fig. 5) and the non-mono-
tonic H–t relation (Fig. 6), we focus on the relaxation data over
the fully swollen elastomers measured by Cai et al., which has
the longest relaxation time, giving more data points to reflect
the relaxation process. Cai et al. have measured the evolution of
osmocapillary phase separation using silicone oil of three
different molecular weights: 14 kg mol�1, 28 kg mol�1, and
49 kg mol�1 (Fig. 7). They characterized the elastic deformation
using the maximum vertical surface displacement relative to
the initial undeformed surface, which is equivalent to H
discussed in Fig. 6. They characterized the size of osmocapillary
phase separation by the vertical distance between the highest
points of the solvent surface and the solid surface. This
is equivalent to our phase separation height h and is connected
to the phase separation width w by a constant as discussed
in Section 4. Then their measurements can be directly com-
pared to the simulated w and H discussed in Fig. 5 and 6.
The deformation size for the 14 kg mol�1 sample shows a
clear decrease then increase behavior (Fig. 7A), agreeing with
the behavior of H in our simulation (Fig. 5). Since silicone

Fig. 7 The phase separation size (corresponding to our w) and the deformation size (corresponding to our H) measured by Cai et al.13 for silicone oil of
molecular weight (A) 14 kg mol�1 (B) 28 kg mol�1 (C) 49 kg mol�1.

Fig. 6 How the height of surface elastic deformation evolves with time (A) fixing K/G = 1, the elastic deformation increases with P0/G. (B) When H is
normalized by P0/G, cases of different P0/G converge at the short-time undrained limit and the long-time drained limit. The case with lower P0/G shows
a larger dip in normalized H due to slower solvent migration. (C) Fixing P0/G = 10�2, the more compressible the network, the larger the deformation in
the drained limit.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
 2

02
5.

 D
ow

nl
oa

de
d 

on
 0

6/
02

/2
02

6 
19

:1
6:

18
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sm00993f


174 |  Soft Matter, 2026, 22, 167–177 This journal is © The Royal Society of Chemistry 2026

oil with higher molecular weight relaxes slower, samples with
28 kg mol�1 (Fig. 7B) and 49 kg mol�1 (Fig. 7C) did not show
the increase in deformation size by the end of the measurement.
The deformation size dominates over the phase separation at
time scales shorter than B103 s, indicating that nonlinear
deformation is non-negligible at such time scales. The linear
poroelastic modeling is only expected to be applicable at longer
time scales.

To better compare the dynamic of phase separation with the
simulated scaling law w p t0.32, we plot the separation size of
all samples in one plot (Fig. 8A). Two additional measurements
of 14 kg mol�1 and 49 kg mol�1 samples are included. Since
stress-free osmotic pressure P0 can easily change by orders of
magnitude with a small change in solvent content near the fully
swollen state (Fig. 3B), measurements of the same molecular
weight show a variability comparable to that between measure-
ments of different molecular weights. Nevertheless, all five sets
of data follow the w p t0.32 scaling at long time scales above
B103 s. Limited by the range of data, the difference between
w p t1/3 and w p t0.32 cannot be experimentally distinguished.
At short time scales, the nonlinear deformation is significant,
and the relaxation is noticeably faster than w p t0.32. For
similar experiments, Qian et al. used t1/2 to fit the relaxation
in the short time scales.18 Cai et al.’s data do not support the
t1/2 scaling at the short time scale. In Fig. 8A, relaxation keeps
getting faster at shorter time scales. The t1/2 power law can
appear tangent to the relaxation data at intermediate time
scales but is not an asymptote. The accelerated relaxation can
be attributed to two nonlinear effects. First, if deformation
induces significant surface curvature, the capillary pressure
near osmocapillary phase separation pulls solvent towards the
surface, accelerating the transport (Fig. 8B). Second, in the

linear case, solvent flux into osmocapillary phase separation
increases the curvature of the solvent surface, thus reducing the
capillary pressure in the osmocapillary phase separation, which
is the driving force for solvent migration. In the nonlinear case,
the solvent flux is largely consumed by replacing the volume
occupied by deformed solid without changing the surface
curvature, thus not affecting the capillary pressure (Fig. 8C).
Consequently, the driving force decreases slower, and overall
relaxation is faster.

8. Summary

In summary, this paper developed the nonlinear and linear
poroelastic model for dynamic osmocapillary phase separation.
Finite element simulation based on the linear poroelastic
model is performed to reveal how the relaxation of osmocapil-
lary phase separation is affected by the compressibility of the
network K/G and the stress-free osmotic pressure P0/G. Both
K/G and P0/G are connected to the swelling ratio of the polymer
network through constitutive models such as the Flory–Rehner
model. The simulation qualitatively agrees with experimental
measurements on (1) a higher stress-free osmotic pressure
P0 leads to faster relaxation and larger equilibrium size of
osmocapillary phase separation. (2) The surface deformation
induced by osmocapillary phase separation first decreases then
increases with time. (3) The growth of the size of osmocapillary
phase separation follows the p t0.32 scaling when deformation
is small. The linear model works at long time scales when
P0/G o 1. At short time scales, the nonlinear deformation leads
to non-power-law relaxation faster than t0.32. For cases with
P0/G 4 1, the elastocapillary deformation dominates over
osmocapillary phase separation. Consequently, the nonlinear
effect is significant at all time scales. Since the size of osmo-
capillary phase separation is small and the wetting behavior is
dominated by elastocapillary deformation when P0/G 4 1,
the poroelastic relaxation is likely dominated by the solvent
migration within the swollen solid due to elastocapillary
deformation,32 rather than the osmocapillary relaxation that
pulls the solvent out of the solid.

Conflicts of interest

There are no conflicts to declare.

Data availability

The work did not generate any experimental data. Necessary
information to reproduce the simulation in the commercial
software COMSOL has been included in the manuscript.
An example simulation file using COMSOL 6.3 is provided
in the supplementary information. See DOI: https://doi.org/
10.1039/d5sm00993f.

Fig. 8 Compare with experimentally measured growth dynamics of
osmocapillary phase separation (A) experimental data agrees with the
w p t0.32 (solid black lines) scaling at long time scales when linear
deformation assumption is valid. Relaxation is faster than both t0.32 and
the conventional t1/2 (dashed black lines) at short time scales when non-
linear effect is significant. Same colors correspond to the same data set in
Fig. 7. (B) With significant nonlinear deformation, capillary pressure on the
surface promotes the solvent migration towards the surface, thus accel-
erating the relaxation. (C) With significant nonlinear deformation, the flux
into the osmocapillary phase separation mainly fills the volume occupied
by the deformed solid (encircled by red dashed line) rather than increasing
the curvature of the solvent surface, thus not reducing the capillary
pressure in the phase separation, leading to faster relaxation.
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Appendices
1. Linearized Flory–Rehner model

At the reference state l1 = l2 = l3 = l0. Assume a small dis-
placement field ui relative to this reference state. The deformation
gradient FiK = l0djK(dij + ui,j). Plug into eqn (1) and (4):

sij ¼
NkBT

l03 1þ ekkð Þ l0
2 dik þ ui;k
� �

djk þ uj;k
� �

� dij
� �

� pdij : (A1)

p ¼ �P� kBT

O

� log 1� 1

l03 1þ ekkð Þ

� �
þ 1

l03 1þ ekkð Þ þ
w

l06 1þ 2ekkð Þ


 �
(A2)

Here we have used eqn (5) to replace m with P in eqn (4).
Cancel out p from eqn (A1) and (A2). The terms independent of
eij gives the equilibrium condition at the new reference state:

sij ¼
NkBT

l03
l02 � 1
� �

dij
� �

þ kBT

O
log

l03 � 1

l03

� �
þ 1

l03
þ w
l06


 �
dij

þ ekkdij þP0dij :

(A3)

The stress-free condition at this reference state (sij = 0)
requires:

P0 ¼ �
kBT

O
log 1� 1

l03

� �
þ 1

l03
þ w
l06


 �
�NkBT

l03
l02 � 1
� �

:

(A4)

Then the terms linear in eij gives:

sij ¼ 2
NkBT

l0
eij�

ekk
3
dij

� 	

þ NkBT

3l03
3�l02
� �

þkBT

O
1

l03�1
� 1

l03
� 2w
l06

� �
 �
ekkdijþ P̂dij :

(A5)

Here P̂ is the deviation of the osmotic pressure from the
reference state. Eqn (A5) are in the form of eqn (9) with G and K
identified in eqn (10) and (11).

2. The geometry of osmocapillary phase separation

Consider the 2D phase separation drawn in Fig. 9. Under the
assumption of osmocapillary phase separation dominating
over the elastocapillary deformation, the swollen solid is neg-
ligibly deformed thus remaining flat. Then the geometry of the
phase separation is solely determined by the interfacial ten-
sions and the capillary pressure pC in the solvent (Fig. 9A).
Here g is the solvent–air interfacial tension, a’s represent the
dimensionless ratios between interfacial tensions, the sub-
scripts S, G, L, A represent the solvent, gel, liquid, and air.
For example, aSL = gSL/g. Denote the gel–solvent–liquid contact
angle as ySL and the gel–solvent–air contact angle as ySA. The
force balance at these two three-phase contact lines follows the
classical Young’s equation:

aSL cos ySL = aGS � aGL, (A6)

cos ySA = aGS � aGA. (A7)

At a length scale much larger than the osmocapillary phase
separation, the apparent contact angle of the liquid droplet on
the solid substrate is y at the liquid–solvent–air contact line.
The force balance over the whole solvent phase recovers the
classical Young’s equation:

aLA cos y = aGL � aGA. (A8)

Introducing two auxiliary angles a and b, the force balance at
this contact line gives:

aLA cos y = aSL cos a � cos b, (A9)

aLA sin y = aSL sin a + sin b. (A10)

Fig. 9 (A) The interfacial tension between each phase ensures force balance. (B) The solvent–liquid and solvent–air interfaces have constant radius of
curvature, allowing the geometry of the phase separation to be analytically predicted.
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Eqn (A6)–(A10) allows the angles to be fully determined by
the ratios between interfacial tensions:

ySL ¼ arccos
aGS � aGL

aSL

� �
; ySA ¼ arccos aGS � aGAð Þ; y

¼ arccos
aGL � aGA

aLA

� �
;

a ¼ arccos
aGL � aGA

aLA

� �
� arccos

aLA
2 þ aSL

2 � 1

2aLAaSL

� �
;

b ¼ arccos �aLA
2 þ 1� aSL

2

2aLA

� �
� arccos

aGL � aGA

aLA

� �
:

(A11)

Eqn (A11) completely determines the shape of the phase
separation. The size of the phase separation is determined by
the length scale g/pC where pC is the capillary pressure in the
solvent phase. According to the Young–Laplace equation, the
solvent–liquid and solvent–air interfaces are both circular arcs.
Their radii of curvature are aSLg/pC and g/pC. Then according to
the schematics in Fig. 9B, the phase separation height h can be
geometrically determined as h = g/pC � g/pC cos b. Recalling the
definition h = Chg/pC, we have:

Ch = 1 � cos b. (A12)

The phase separation width w can be determined as w =
(aSLg/pC)(sin a � sin ySL) + (g/pC)(sinb � sin ySA). Recalling the
definition w = Cwg/pC, we have:

Cw = aSL(sin a � sin ySL) + sin b � sin ySA. (A13)

We assume the geometry has a unit in-plane depth, then we
calculate the area of phase separation in Fig. 9B to represent
the volume V. Consider the left half of the phase separation.
The area of phase separation under solvent–liquid interface is
denoted as A1. Shape A1, together with a fan-shape A2 = (aSLg/
pC)2(a + ySL � p)/2, and a triangle A3 = (aSLg/pC)2 sin(p �
ySL)cos(p � ySL)/2, forms a trapezoid: A1 + A2 + A3 =
((aSLg/pC)cos(p � ySL) + h)(aSLg/pC)sin a/2. A1 is then calculated
by subtracting A2 and A3 from the trapezoid. We can similarly
derive the area of the right half of the phase separation. Then
recalling the definition V = CV(g/pC)2, we have

CV ¼
1

2
aSL

2 � cos ySL þ 1� cos að Þ sin að
�
� aþ ySL � pð Þ þ sin ySL cos ySLÞ

þ � cos ySA þ 1� cos bð Þ sinbð

� bþ ySA � pð Þ þ sin ySA cos ySAÞ�

(A14)

Note that all angular variables in eqn (A12)–(A14) can
be expressed by the interfacial energies of the six interfaces
involved, as eqn (A11) shows.
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