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Environmental significance

Observational evidence of the impact of electric
vehicles on local air quality in the United States

Amélie C. Lemay, 2 *@ Desirée L. Plata (2@ and Mark A. Zondlo {2 °

Replacement of internal combustion engine vehicles with battery electric vehicles (EVs) is expected to
impact air quality. Previous projections, often relying on emissions inventories of precursors with high
uncertainties, have yielded results that vary by model parameters and assumptions. There remains little
empirical investigation of the real-world effects, particularly for the low yet growing levels of
electrification in the United States. Here county-level vehicle registrations and measurements from
ground-level air monitors from 2018 through 2023 were used to investigate the impacts of EV
penetration on annual and seasonal concentrations of criteria air pollutants in the United States. Fixed
effects regression analysis revealed that rising EV penetration was associated with reductions in mean
annual concentrations of nitrogen oxides (NO, as the sum of NO, and NO), carbon monoxide (CO), and
fine particulate matter (PM, ) and in mean summer season concentrations of ozone (Os). By contrast,
there was a potential increase in sulfur dioxide (SO,). The findings demonstrate empirical improvements
in air quality associated with EV adoption yet highlight the risk of a continued reliance on fossil fuels.
Strategic policies that support enhanced EV adoption must support commensurate expansion of
renewable energy access in order to maximize the air quality benefits of the technology.

Air quality has a substantial impact on human health, with exposure to poor outdoor air linked to millions of deaths annually. Vehicle traffic is responsible for
alarge fraction of emissions. Previous studies have used chemical transport models to simulate a transition from internal combustion engine vehicles to electric
vehicles (EVs), but the projected impacts on air quality have yielded results that vary by model parameters and assumptions. Here, we present observational
evidence of the real-world impact of EV adoption on local air quality in the United States. The findings demonstrate air quality improvements associated with EV

adoption, yet they indicate that renewable energy access is essential for realization of the full air quality benefits of vehicle electrification.

1 Introduction

Poor air quality contributes to 4.2 million annual deaths glob-
ally," and an estimated 100 000 U.S. annual deaths are attrib-
uted to domestic anthropogenic emissions.> Vehicle traffic
represents a large fraction of pollutant emissions that impact
outdoor air quality, with on-road sources contributing 27% of
nitrogen oxides (NO,), 22% of carbon monoxide (CO), 1.4% of
primary particulate matter with a diameter less than 2.5 pm
(PM,.5), 1.1% of primary PM;,, and 0.5% of sulfur dioxide (SO,)
total emissions in the U.S.*> Additionally, NO, and SO, are crit-
ical species that contribute to secondary PM and ozone (O3)
formation.*® Consequently, the transportation sector is a major
determinant of ambient air quality in the U.S.

Previous studies have modeled varying electrification
scenarios to predict the potential impacts on air quality of
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replacing internal combustion engine (ICE) vehicles with
battery electric vehicles (EVs).*** Most models predict strong
declines in concentrations of NO, and CO, which are directly
emitted from vehicle tailpipes, and a rise or no change in SO,,
attributed to increased electricity production from fossil energy
sources (and coal in particular) at electric power plants to
charge EVs." Projected impacts on PM and Oj; yield varying
results,” reflecting uncertainties in precursor emissions and
nonlinearities in reaction pathways.*'® Furthermore, model
simulations and chemical transport models rely on emissions
inventories that, while considered robust for NO,, have greater
uncertainty in the accuracy and completeness of emissions of
precursors for secondary aerosols such as ammonia (NH;) and
volatile organic compounds (VOCs)."”* Consequently, these
models may fail to capture effects stemming from emissions
not reflected in current inventories and, for secondary aerosols,
reaction pathways that have evolved or that lack thorough
chemical description.

The real-world impacts of EVs on air quality using empirical
data remain understudied. While most models have simulated
EV penetration of at least 20%, EV adoption in the U.S. remains
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far below those levels. In 2023, EV registrations in California
were highest in San Mateo County at 7.5% of total registra-
tions,”® while EVs represented only 1.2% of national light-duty
vehicle registrations.”® Few studies have investigated whether
these levels of electrification have measurably affected air
quality. In China, cumulative sales of EVs since 2014 ** and the
implementation of a policy subsidizing purchases of non-ICE
vehicles® were correlated with declines in PM,5; a study
analyzing increasing EV usage found declines in PM, 5, PM;,,
CO, SO,, and O; but an increase in NO, in three Chinese cities
between January 2019 and October 2020 (a period coinciding
with the COVID-19 pandemic).** In California, there was
a reduction in asthma-related hospital visits but no significant
effect on mean annual NO, with rising EVs and plug-in hybrid
vehicles (PHEVs) per capita (2013-2019).>° In light of these
sparse investigations, there remains a knowledge gap of the
observed impacts of EVs on criteria air pollutants across much
of the U.S.

Here, we empirically investigated the effects of EVs on air
quality by examining EV registrations and observations from
ground-level air monitors spanning 20 of 48 contiguous states.
County-level EV registrations were obtained via public records
requests to state departments and from open databases and
paired with air quality data from the network of monitor
stations that report to the U.S. Environmental Protection Agency
(EPA). We examined annual and seasonal concentrations of
NO,, NO,, NO, CO, O3, SO,, PM, 5, and PM,, from 2018 through
2023 (Table S1) and used two-way fixed effects regression anal-
ysis to determine the relationship between EV penetration in
the vehicle fleet and ambient concentrations of each pollutant.
The magnitudes of the NO, and CO results were compared with
the expected concentration declines based on the associated
reductions in emissions. This work aids understanding of how
vehicle electrification has impacted air quality across the U.S.
and informs critical policy interventions to maximize the public
health benefits of EV adoption.

2 Methods

2.1 Regression model

Two-way fixed effects regression, a technique for causal infer-
ence on longitudinal data,*® was used to evaluate the impact of
EV penetration on pollution levels. The unit fixed effect controls
for site-specific variables that may influence pollution levels and
the time fixed effect controls for nationwide changes in pollu-
tion with time. Mathematically, the unit mean and time mean
are subtracted from each observation prior to regressing the
dependent variable on the independent variable.

Vie = BevEVs; + v; + 6, + &; (1)

In eqn (1), y; is the pollution level at monitoring site i in year
¢, Brv is the change in y; for a 1-unit change in EVs;;, EVs;, (%) is
the fraction of the total vehicle population that is battery electric
in the county of monitoring site i in year ¢, v; is the unit fixed
effect (air monitor site), d, is the time fixed effect (year), and ¢;, is
the error term (Table S3). Potential intra-county correlation of
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the regression residuals due to the nesting of monitor sites i
within counties (i.e., multiple monitor sites in a single county)
was accounted for in the calculation of the standard errors (see
final paragraph of Methods).

To control for potential time-varying confounders, the
following covariates at the county and year level were added to
the model specification: residential heating electrification rate,
total vehicle population, median income, telecommuting frac-
tion of workers, mean air temperature, and total precipitation.

Yit = 5EVEVSit + ﬁElecEleCir + 6Vehvehit + ﬁlnclncit + ﬁTeleTeleir
+ ﬁTempTemp[[ + ﬁPrcpPGCit + Yi + 6! + Eit (2)

In eqn (2), Elec, Vehy, Inc;, Tele;, Temp;;, and Prcp;, are the
fraction of occupied households using electricity as home
heating fuel (%), total vehicle population, median income
(dollars, adjusted for inflation), fraction of workers who worked
from home (%), mean air temperature (mean of monthly
means, °F), and total precipitation (inches) in the county of
monitoring site 7 in year ¢, respectively, and Bgiec, Bvens Bmes Oreles
Bremps and Bpcp are the corresponding regression coefficients.
For the seasonal analyses, Temp;, and Prcp;, were the mean and
total, respectively, of each respective season (summer and
winter). The specification with all covariates (eqn (2)) is the
primary model cited in the main text (Tables S4 and S6). The
results using a model specification including only the covariates
that had a marked change on the regression coefficient on EV
share of the vehicle fleet (8gy) when added individually to eqn
(1) (mean air temperature and total precipitation, Table S7) are
presented in Tables S8 and S9. The results using a model
specification with the meterological covariates excluded are
presented in Tables S10 and S11.

Confidence intervals and P-values were computed using
critical values from a t-distribution with G — 1 degrees of
freedom, with G the number of years of the panel data (i.e., 6), to
account for potential correlation of the regression residuals
within clusters. This is an approach proposed by Cameron &
Miller* for data for which the use of multi-way clustered stan-
dard errors (by year and county) is not possible due to the small
number of clusters (i.e., 6 years) in one or both of the ways. This
approach uses standard errors that assume independent and
identically distributed residuals yet employs critical values from
the t-distribution with 7(G — 1) degrees of freedom, with G the
number of clusters, in place of the z-distribution (i.e., T(%)),
thereby demanding a greater magnitude of the ¢-statistic for
rejection of the null hypothesis. We additionally present the
results with standard errors clustered by county (Tables S14 and
S15). The standard errors clustered by county were smaller than
those computed with the aforementioned approach for all
pollutants except PM;, (due to a high number of nested sites),
i.e., the approach used in this work was more conservative for
nearly all pollutants. Analysis was performed in R (4.4.2) using
the plm package (2.6-4) specifying year and air monitor site as
the fixed effects. Clustered standard errors in Tables S14 and
S15 were computed using the sandwich package (3.1-1). A
significance level, «, of 0.05 (two-tailed test) was used to
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evaluate the regression coefficients against the null hypothesis
(HO: ﬁEV = 0).

2.2 Datasets

2.2.1 Air quality. Air quality data were obtained as pre-
generated data files from EPA Air Data.”® Annual summary
files and daily summary files were downloaded for each
pollutant. The annual files were used for the full-year regression
and the daily files were used for computing seasonal means for
analysis of seasonal subsets. The annual and daily files were
filtered to exclude sites with observation percentages lower than
80% and to exclude observations noted as containing an event
(e.g., fireworks or wildfires). Several sites had multiple
measurements for the same parameter using different instru-
ments; readings for the same parameter at sites with identical
latitude and longitude coordinates were averaged. One CO site
with anomalous measurements in 2022 and 2023 (recordings of
—103.132 ppb in both years) was excluded. The metric used for
each pollutant of the annual data was selected to correspond
with the measurement collected for compliance with the most
recent National Ambient Air Quality Standard (NAAQS):* daily
maximum 1 hour average for NO, and SO,, daily mean of 24 1
hour averages for NO, and NO (no NAAQS), daily mean of 8 hour
running averages reported hourly for CO, daily maximum 8
hour average for O;, and daily mean of 24 hour sampling or
daily 24 hour block average for PM, 5 and PM,, (Table S1). (Note
that the most recent CO NAAQS used both 8 hour and 1 hour
averaging periods; the 8 hour metric was used in this work due
to presumed greater stability of measurements using the longer
averaging period. Results using the 1 hour period are presented
in Table S13). For computing seasonal means from the daily
data, summer season was defined as the period between May 01
to October 31 and winter season between November 01 to
December 31 and January 01 to April 30. Only sites with
measurements for 80% or greater of the days in each of both
seasonal periods (184 in summer and 181 in winter) were
included. The metric used to compute seasonal means from the
daily data for each pollutant was chosen to correspond with the
metric of the annual data (e.g., the maximum 1 hour average of
each day was used for NO, whereas the mean 1 hour average of
each day was used for NO, and NO). Near-road NO, monitoring
sites were identified by downloading the list of active near-road
sites of the EPA Interactive Map of Air Quality Monitors.

2.2.2 Electric vehicle registrations. Time series data of EV
registrations by county were obtained from online databases
and via public records requests to state motor vehicle and
environmental departments. All contiguous states for which EV
registrations were not available online were contacted. Time
series data dating to 2018 were available for 20 states. ZIP codes
were converted to county FIPS code using the USPS ZIP Code
Crosswalk Files for datasets with registrations provided by ZIP
code. Out-of-state vehicles (registered in one state but with
a mailing ZIP code in another) were counted in the county of the
ZIP code of the other state, provided the other state was
included in the analysis (had EV data available). Maine 2019
registration data were imputed as the average of the 2018 and
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2020 counts by ZIP code due to missing data in that year. Full
details on acquisition of data for individual states are provided
in Table S20.

2.2.3 Total vehicle count, residential heating electrifica-
tion, median income, and telecommuting patterns. American
Community Survey (ACS) data’*** were used to estimate the
total vehicle count, home heating electrification rate, median
income, and telecommuting fraction of workers by county and
year. ACS 1 year estimates were available for 2018, 2019, 2021,
2022, and 2023 for counties with populations of 65000 or
greater. The 1 year estimates for 2020 were not available
(presumably due to limited sampling during COVID-19). The
2020 1 year estimate was consequently imputed as the average
of the 2019 and 2021 1 year estimates. For counties for which 1
year estimates were not available for one or more years (beyond
2020) for a given variable (vehicle count, home heating electri-
fication, median income, or telecommuting), the 5 year esti-
mates (representing the average of the preceding 5 years; e.g.,
2014-2018 for 2018) were used. Total vehicle count was esti-
mated as:

Vehicles = 1 x Veh; + 2 x Veh, + 3 x Vehsy (3)

where Veh,, Veh,, and Veh;, were the estimated numbers of
occupied housing units with 1, 2, or 3 or more vehicles avail-
able, respectively. Total vehicle registration counts by ZIP code
and year were available for the state of California, therefore the
ACS estimates computed using eqn (3) were compared against
the state-recorded county totals. The comparison demonstrated
reasonable accuracy of the ACS estimates, with mean and
median percent errors of —12.0% and —21.6%, respectively, and
mean and median absolute percent errors of 34.1% and 23.1%
across all years and counties. Percent errors were largely
consistent across years by county (i.e., under or overestimated
by similar percentages in each year 2018 through 2023), with the
mean standard deviation of the percent errors among 2018 to
2023 for the California counties being 3.1 (%). This demon-
strates that relative growth in EV percentage of the vehicle fleet
should be well-approximated even if there is error in the ACS-
estimated total vehicle count as compared to the true total
vehicle count. Home heating electrification rate was the
percentage of occupied households for which the category
“Electricity” was indicated as the home heating fuel (as opposed
to “Utility gas”; “Bottled, tank, or LP gas”; “Fuel oil, kerosene,
etc.”; “Coal or coke”; “Wood”; “Solar energy”; “Other fuel”; “No
fuel used”). Telecommuting rate was the percentage of workers
aged 16 and older who indicated “Worked from home” as
means of commuting. Median income was household income
in the previous 12 months. Median income was adjusted for
inflation in each year j to 2023 dollars using year-average
consumer price indices:***

CP12023
Y;
Cpy;

(4)

Yiagi =

In eqn (4), CPl,g,; and CPI; were the all-item consumer price
indices in 2023 and year j, respectively. For the ACS 5 year

This journal is © The Royal Society of Chemistry 2025
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estimates, CPI; was the consumer price index in the last year of
each time period.

2.2.4 Temperature and precipitation. Temperature and
precipitation data by year and county were obtained from the
National Oceanic and Atmospheric Administration (NOAA)

View Article Online
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2.3 Predicted concentration change calculations

An estimation of the expected NO, and CO concentration
changes for vehicle electrification was calculated based on the
change in emissions, assuming linearity between concentration
and emissions. The concentration decline (ppb) was computed

National Centers for Environmental Information (NCEI).**

as:
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Fig. 1 Trends in pollution and EV adoption, 2018-2023. (a) Mean annual pollutant concentration and (b) electric percentage of vehicles in the
counties with air quality monitors for each pollutant. Individual county data (gray lines) are illustrated with annotated mean values (red line and
text + 2 SE). For NO,, the values are reported as daily 1 hour maxima, whereas NO, values are reported as daily 24 hour averages (Table S1),
resulting in higher NO, than NO, concentrations. (c) Geographic locations of the air quality monitors (where n indicates the total number of sites;

see Table S2 for regional counts of monitors).
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AC = Cavg X fnet X fon-road (5)

where C,,, is the average annual concentration across all sites
from 2018 to 2023, fy,¢ is the net fractional reduction compared
with ICE vehicles on a per kilometer basis, and fon-roaq iS the
fraction of emissions from on-road sources. For NOy, fnex wWas
assumed to be 0.50, representing the difference between the
0.15 g km ™' emitted from ICE vehicles in 2021 * and the 0.075 g
km ' from the electricity required for EV charging, assuming an
electricity economy of 0.17 kWh km ™" (the average EV electricity
efficiency in 2019, weighted by model sales)** and using the
mean national average marginal emissions factor for NO,
between 2018 and 2023.% fyn.r0aqa Was assumed to be to 0.27 or 1,
representing monitors for which 27% or 100% of the recorded
concentration is attributable to on-road sources (i.e., near-road
monitors for the latter). For CO, f,. was assumed to be 1.0 (due
to the minimal CO emissions from electricity generation), and
fon-roaa Was assumed to be 0.22 or 1, representing monitors for
which 22% or 100% of recorded concentration is attributable to
on-road sources.

2.4 Future SO, concentration projections

Projections of the light-duty vehicle stock by technology type
and net electricity generation by fuel type were obtained from
the projection tables of the U.S. EIA Annual Energy Outlook
2023.%%* Note that the 2025 Outlook did not forecast impacts
associated with the 2022 Inflation Reduction Act. EV share was
computed as the sum of electric vehicles divided by the total
stock of cars and light trucks in each year. Coal share of the
electricity portfolio was computed as the net electricity gener-
ation from coal divided by the total net electricity generation in
each year. SO, concentration in each year i (SO, ) following year j
was computed as:

SO, = SOy, + (EV; — EV;) x ( coal; ) x053  (6)
€oalz3
where coal, is the coal fraction of the energy mix in year i and
EV;; is the electric share of the vehicle stock in year i or j,
respectively. SO, was the mean 2023 concentration of all SO,
sites of 2.1 ppb.

3 Results and discussion
3.1 Trends in annual concentrations and EV penetration

Between 2018 and 2023, there were declines for all pollutants
except O, for which there was an increase of 3.2% (Fig. 1). The
largest declines were observed for SO, (46%), NO (22%), and
NO, (16%), and smaller declines were observed for PM, s
(9.9%), PM;, (9.8%), NO, (8.9%), and CO (8.8%). The trends are
similar to those reported by the EPA for its entire national
monitoring network,* adding confidence that the subset of
sites located in states with EV registration data available and
used in this work is representative of the complete network. The
declines in NO,. and SO, reflect the implementation of regula-
tory standards governing power plant and vehicle emissions.*
While declines in NO, and SO, reduce PM, other PM sources,

3824 | Environ. Sci.: Processes Impacts, 2025, 27, 3820-383]
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including agriculture and wildfires, emit precursors such as
NH; and VOCs that remain largely unabated.***** These
nationwide trends in pollution over time were accounted for in
the model specification through the inclusion of a year fixed
effect, which subtracted the year mean from each observation.
In other words, the overall nationwide declines in pollution
from all causes were controlled for when analyzing the impact
of local changes in EV adoption on pollution levels. EV pene-
tration levels were similar among the counties of monitors for
each pollutant and increased from 0.25% (2018) to 1.5% (2023).

3.2 Impact of EV penetration on pollution

Two-way fixed effects regression was used to examine the
impacts of EV penetration on local air pollution (Fig. 2). Briefly,
the model specification included fixed effects to control for
monitor site variables that do not change with time (e.g., local
topography of the monitor site) and for nationwide changes
over time (e.g., reduced industrial activity during COVID-19).
Therefore, any unobserved systematic differences between
sites and any universal time shocks across sites were controlled
for in the regression. The following covariates were added to
control for potential time-varying confounders: total precipita-
tion, average air temperature, home heating electrification rate,
total vehicle population, median income, and telecommuting
patterns. Therefore, county-specific changes in these factors
over time were additionally controlled for in the model. The
change in concentration of each pollutant for each percentage
point increase in EV penetration (i.e., the regression coefficient
of EV share of the vehicle fleet) was evaluated against the null
hypothesis assuming no impact of EV penetration on ambient
pollution.

3.2.1 Nitrogen oxides and carbon monoxide. Rising EV
penetration was associated with reduced annual concentrations
of the nitrogen oxides, measured as combined NO, or separately
as NO, or NO. A 0.44 ppb decline in mean annual NO,
concentration (95% confidence interval (CI) —0.64 to —0.25; P =
0.0020) was estimated for a one percentage point increase in EV
penetration in a county, using the model specification
controlling for temperature, precipitation, home heating elec-
trification, vehicle population size, income, and tele-
commuting. For seasonal analysis, summer and winter means
were computed from the daily data. For NO,, EV coefficient
estimates in summer and winter were not significantly different
(n = 136; summer P = 0.0040, winter P = 0.0019), implying that
the impact of EV penetration on NO, levels was largely
seasonally invariant. There were small seasonal sample sizes of
NO, and NO (n = 21 and n = 23), yet the overlapping CIs sug-
gested a similarly constant effect size by season (Table S6). For
CO, there was a 6.3 ppb decline (CI: —12, —0.17; P = 0.046) in
mean annual concentration associated with each percentage
point increase in EV penetration, using the model with the
aforementioned control variables. As with NO,, the magnitude
of the effect was seasonally invariant. Separate analysis of the
subset of sites in the EPA near-road monitoring network was
performed but did not suggest differing effect sizes at near-road
versus non-near-road sites (Fig. S3). Comparing these findings

This journal is © The Royal Society of Chemistry 2025
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Impact of increasing EV penetration on ambient pollution. (a—h) Subplots show the results of two-way fixed effects regression of pollution

level against EV percentage of the vehicle fleet. Each data point represents one air monitor site in a given year between 2018 and 2023, for a total
of 6 x n points per subplot, where 6 is the number of years and n is the number of air monitor sites. The residualized value of each observation is
shown (i.e., each point represents the observation corrected for site and year means). The expected change in pollution level for each percentage
point increase in EV penetration (slope in inset text) was calculated using linear regression (dashed line) of those residualized data (eqn (1) and
Table S3). Plots visualize the baseline regression model without additional covariates (egn (1)).

with previous work, a majority of previous modeling studies
have predicted declines in NO, and CO with vehicle electrifi-
cation,”™* and a non-significant decrease in NO, was
observed with increasing EV and PHEV adoption in California.*

However, a concurrent increase in NO, from point sources
may be expected due to the greater demand on electric power
plants for vehicle charging.® A calculation of the expected net

This journal is © The Royal Society of Chemistry 2025

effect on NO, in the U.S. is in favor of a decline: converting NO,
emissions from above-baseload electricity generation using the
average U.S. marginal emissions factor from 2018 to 2023,
assuming an EV electricity efficiency of 0.17 kWh km ™" ,*° yields
0.075 g NO, per km. This value is 50% of the estimated 0.15 g
NO, per km emitted from the tailpipes of gasoline-powered
light-duty vehicles in 2021.** Therefore replacing ICE vehicles
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with EVs is expected to result in a net decrease in total NO,
emissions, even under the current U.S. electricity generation
portfolio in which 60% of electricity is generated from fossil
fuels.*® This is in agreement with the decline empirically
observed in this work. Put another way, electricity generation
from renewable sources could double the NO, reduction effects
described here. Regarding CO, emissions from point sources
represent a small fraction of total CO emissions (3.1%),’
because stationary fuel combustion processes are usually
designed with sufficient aeration for complete rather than
incomplete combustion (with the latter being the process that
produces CO).*” The increase in CO emissions from electricity
generation for EV charging is therefore expected to be minimal.

3.2.2 Ozone. There was a 0.21 ppb decline in mean annual
O3 concentration (CI: —0.40, —0.016; P = 0.039) associated with
each percentage point increase in EV penetration, using the
model specification with all covariates, but analysis of the
summer and winter means computed from the daily data
revealed a strong seasonal effect. There was a decline of
0.71 ppb (CI: —1.0, —0.43; P = 0.0013) per percentage point
increase in EV share of the vehicle fleet in summer, and there
was no effect in winter. This seasonal impact of EV penetration
on O; is consistent with the effect of local photochemical
production in NO,-limited regimes, for which a decrease in NO,
results in a decrease in O;.** Winter O; trends are more defined
by long-range sources and transport due to the comparatively
limited local in situ production.**

For greater insight into NO, and VOC-limited regimes,
separate regression analyses were performed on the sites in the
upper and lower quartiles of the data by NO,: VOC ratio. The
ratio of total NO, : VOC emissions for each site was computed
from the county-wide emissions estimates of the 2020 National
Emissions Inventory (NEI).” A greater impact of EV penetration
on O; was expected in the comparatively NO,-limited subset, yet
there were no significant differences in the EV coefficient esti-
mates of the lower and upper quartiles by NO, : VOC ratio on
either annual or seasonal O; (Table S12). This potentially
suggests that the annual and summer Oj; sites were all largely
NO,-limited regimes, and it may additionally reflect the high
uncertainties in emissions inventories of VOC precursors.”*
Broadly, reducing NO, emissions is expected to result in O;
declines in much of the U.S.,*® and continued declines in NO,
are causing more regions to transition from VOC- to NO,-
limited.” Furthermore, strong reductions in NO, have been
identified as the most feasible avenue for O; control in both NO,.
and VOC-limited regimes, given that the majority of VOC
emissions, even in dense urban areas, have been attributed to
sources that are difficult to regulate.'>**** The results observed
here provide evidence that increasing EV penetration was linked
to declines in summer O; across the sites studied.

3.2.3 Particulate matter. There was a decrease of 0.28 pg
m~ (CL: —0.46, —0.10; P = 0.010) in annual PM, ; associated
with each percentage point increase in EV share of the vehicle
fleet, controlling for all covariates. The effect was seasonally
invariant. By contrast, there was no significant association
between EV penetration and either annual or seasonal
concentrations of PM;, when controlling for the covariates. The
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difference in the effects for PM, 5 and PM,, likely reflects the
composition of each species: a large fraction of PM;, is
composed of coarse particles (e.g., road and agricultural dust)
that are expected to be less impacted by vehicle electrification
than fine particles. A decline in PM, 5 associated with increasing
EV adoption was observed in Chinese provinces,*” and declines
in PM, 5 have been predicted by previous model simulations of
vehicle electrification.”®*> Some models have projected
a minimal change in PM, however, due to increased PM, s
precursor emissions from power plants* and to increased or
unchanging non-exhaust PM, 5 and PM,, emissions from tire
and brake wear.*®** The empirical results observed here
demonstrate a net decline in annual PM, 5 and no change in
PM,, in the U.S. associated with EV adoption between 2018 and
2023. The decline in PM, 5 is likely attributable to reductions in
both direct vehicle emissions (primary PM, 5) and to reductions
in NO, that reduced formation of secondary PM, s; therefore,
the favorability of the net decline is expected to improve with
a transition from fossil fuel to renewable energy sources.

3.2.4 Sulfur dioxide. In contrast to the reductions observed
in NO,, CO, seasonal Oz, and PM, s, there was a potential
increase, significant at the « = 0.10 level, in mean annual SO,
concentration of 0.53 ppb associated with each percentage
point increase in EV penetration (CI: —0.011, 1.1; P = 0.053),
using the model specification with all covariates. There was
a significant increase in winter SO, (0.76 ppb; CI: 0.15, 1.4; P =
0.024) but no effect in summer (P = 0.12). An increase in SO, has
been predicted by previous modeling studies of EV adoption
and attributed to increased electricity production at coal-fired
power plants.’>'>** The result may also reflect an impact of
the decreases in NO, associated with EV adoption. NO, can
oxidize SO, to sulfate,”*® therefore reduced oxidation of SO, by
NO, could result in an increase in ambient SO,.

Unlike NO,, there is no corresponding emissions decrease in
the transportation sector for SO, with increasing EV adoption.
These results suggest a potential air quality risk of increasing
electrification if there is not a concurrent transition to renew-
able energy. SO, exposure is associated with respiratory
ailments, and SO, serves as a precursor of sulfate PM, 5, which
has an elevated mortality risk compared with other PM, s
species.**” Additionally, SO, emissions result in the wet depo-
sition of sulfuric acid rain that adversely impacts water and soil
quality.”® While the implementation of evolving regulatory
standards has resulted in strong nationwide decreases in SO,
since 1970,* these results suggest that electrification without
simultaneous reduction in coal combustion may halt or reverse
the declines.

3.3 Comparison of observed and predicted concentration
changes

To gauge if the observed effects are plausible in magnitude, the
effect sizes of increasing EV adoption on NO, and CO concen-
trations were compared against calculated predictions based on
the changes in emissions. Linearity between national-level
emissions and concentration of NO, was observed between
2002-2019, and average CO concentrations were previously

This journal is © The Royal Society of Chemistry 2025
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demonstrated to be approximately linear with vehicle pop-
ulation in urban centers.®® Therefore, a linear relationship
between emissions and concentration of NO, and CO was
assumed for the present calculations. Predictions were not
computed for the other pollutants due to the higher uncer-
tainties regarding the relationship between emissions and
concentration (e.g., nonlinearity in NO, reduction and Oj
concentration,*® differing regional and temporal marginal
emissions factors of SO,,** primary emissions vs. formation of
secondary PM, 5 and PM,,). To account for uncertainty in the
fraction of recorded concentration represented by on-road
sources (ie., vehicle emissions may contribute a larger frac-
tion of the emissions corresponding to recorded concentrations
of near-road monitors), a range was computed by considering
monitors that record largely background to fully on-road
concentrations (lower and upper bounds, respectively). For
NO,, a previous calculation using a national average marginal
emissions factor estimated the net NO, emissions from EVs on
a per kilometer basis as 50% of that of ICE vehicles (0.075 vs.
0.15 g km™"). The lower bound of the expected concentration
decline for replacement of 1% of vehicles with EVs was there-
fore estimated as 50% of 27% of 1% of the mean annual
concentration, with 27% representing the fraction of total NO,
emissions from on-road sources.® This represents monitors
measuring primarily background NO, levels. The upper bound
of the decline for replacement of 1% of vehicles with EVs was
calculated as a reduction of 50% of 100% of 1% of the mean
annual concentration, representing monitors for which the
recorded concentration is fully dependent on on-road NO,
emissions. These estimations assume linearity in that a 1%
reduction in concentration is expected for a 1% reduction in
emissions. An analogous computation was performed for CO,
using a range of 22% of 1% to 100% of 1% of the mean annual
concentration (with 22% being the fraction of CO emissions
from on-road sources® and there being minimal CO emissions
from electricity production®”).

The calculations predict a 0.018-0.067 ppb decline in NO,
and a 0.64-2.9 ppb decline in CO for electrification of 1% of the
vehicle fleet, as compared with the effect sizes estimated from
the regression on the observed data of —0.59 ppb for NO, and
—6.3 ppb for CO. The predictions are therefore smaller than the
effect sizes estimated from the observed data by factors of 9 to
33 and 2 to 10, respectively. A portion of the discrepancy may be
attributable to imperfect linearity between emissions and
concentration, particularly on a local scale over a relatively short
time period (i.e., 6 years). Furthermore, these estimations did
not differentiate between replacements of light-, medium-, and
heavy-duty vehicles, as vehicle class breakdown was not avail-
able for all EV registration data. However, the discrepancy also
suggests the possibility of an unobserved confounder. A corre-
lation between EV adoption and replacement of older ICE
vehicle models with newer lower NO,- and CO-emitting ICE
models is plausible and may account for a portion of the NO,
and CO reduction effect sizes. However, the covariate for
median income included in the model specification may act as
a partial control for this potential confounder. A second possi-
bility is a correlation between vehicle electrification and

This journal is © The Royal Society of Chemistry 2025
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electrification of building appliances and heating systems. To
account for this, a covariate to control for the percentage of
households using electricity as home heating fuel by county and
year, i.e., residential heating electrification (which may be ex-
pected to correlate more strongly with EV adoption than
commercial or industrial sector electrification) was included in
the model specification, thereby partially controlling for this
potential confounder. In summary, the collection of observed
effects suggests EV adoption as the primary causal driver,
though uncertainties remain regarding the precise effect size of
concentration change per percentage point electrification of the
ICE vehicle fleet. Continued monitoring of effect size as EV
adoption increases will provide further insight regarding the
magnitudes of observed concentration changes.

3.4 Future projections

We projected the empirically observed potential relationship
between EV penetration and SO, concentration to three case
scenarios from the U.S. Energy Information Administration of
potential uptake of the 2022 Inflation Reduction Act, which
offers incentives to corporations and individuals to adopt
renewable energy technologies®** (Fig. 3). Electrification of the
light-duty vehicle stock increases from 1.0% in 2023 to 11.0,
11.2, or 12.3% in 2050, and coal fraction of the electricity
generation portfolio decreases from 18.8% to 7.7, 7.5, or 3.9%
under the no, low-, or high-uptake scenarios, respectively. SO,
concentration in each year was computed by scaling the esti-
mated relationship between concentration and EVs (a 0.53 ppb
concentration increase for each percentage point increase in EV
penetration, eqn (2)) by the coal fraction of the electricity mix
relative to its fraction in 2023. We chose to project the linear
relationship estimated over the EV penetration range in this

20
Coal Share T
51 — EV Share
15
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o)
I5)
@
=
108
[0)
R
5
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Fig. 3 Projected SO, concentration under scenarios of varying elec-
trification and fossil fuel reliance. Projected ambient SO, concentra-
tions (red, left axis) from the EV penetration and electricity generation
portfolios (blue, right axis) predicted by the U.S. Energy Information
Administration under scenarios of no, low, or high uptake of the 2022
Inflation Reduction Act (IRA).
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work in order to compare different potential scenarios of EV
uptake and electricity fuel mix.

The results illustrate a rise in SO, with greater electrification
that plateaus as coal percentage of the electricity portfolio
declines. The greater EV adoption rate of the high-uptake
scenario results in the highest SO, concentrations until 2030,
when the comparatively lower coal use of the scenario becomes
dominant. By 2050, there is an SO, concentration difference of
approximately 1 ppb between the high- and no- or low-uptake
scenarios, and the greater electrification of the high-uptake
scenario will additionally result in the lowest NO, levels.

4 Conclusions

While a transition to EVs has primarily been promoted as
a decarbonization strategy, there is empirical evidence that
suggests the EV transition is also quantifiably improving air
quality in metrics relevant to public health. This study exam-
ined observations of criteria air pollutants from the monitoring
network that reports to EPA Air Data and county-level EV
registrations between 2018 and 2023 to investigate the impacts
of vehicle electrification on air quality. The analysis of empirical
data in this work contrasted with the methodology of previous
studies, which have predominantly relied upon chemical
transport models to simulate potential EV adoption scenarios.
Given that the results of previous models have varied due to
differences in model parameters and assumptions, the
approach of this work offered an evaluation of the real-world
changes to U.S. air quality associated with vehicle electrifica-
tion. Notably, there were significant impacts to air quality for EV
penetration levels that reached a county average of 1.5% of
registrations in 2023, implying that the effects are perceptible at
electrification levels below those typically simulated in model
projections (often 20% or greater of the vehicle fleet). Fixed
effects regression analysis provided robust evidence that
increasing EV adoption was linked to observed declines in
annual and individual summer and winter season concentra-
tions of NO,, CO, and PM, ;5. There was a significant decrease in
summer O; and no effect on winter O, consistent with the
effect of local photochemical production. For PM;,, there was
no significant effect of EV penetration when including all
covariates. In contrast to these declines, there was a potential
increase in SO, with rising EV penetration that suggested the
adverse effect of a reliance on coal-based fossil fuels. The
findings provide evidence that the effects of vehicle electrifica-
tion on air quality are largely beneficial, yet using coal-based
energy sources to power the electrification transition risks an
increase in SO,.

The declines in ambient concentrations of NO,, CO, O3, and
PM, s have the potential to reduce differences in air quality
between heavily-trafficked and less congested corridors, which
would address part of the current disparity in pollution levels
between urban and suburban neighborhoods.***** Given the
health impacts of exposure to these pollutants, this has the
potential to increase parity in physical and mental well-being
between neighborhoods of light and heavy traffic.®>*®
However, if EVs are charged by electricity generated from fossil
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fuels, emissions increases from electric power plants may
exacerbate disparities in air quality between those living near
and far from point sources. This impact is most pressing with
respect to SO,, which is associated with the burning of coal in
particular and does not have an associated decrease in the
transportation sector with increasing EV penetration. Further-
more, while a decline in PM, 5 associated with greater vehicle
electrification was observed in this work, the SO, increases may
be expected to result in localized sulfate PM, 5 increases near
power plants. Regarding NO,, the impact of electrification on
NO, is strongly favorable in terms of a net decline (with net
emissions from EVs being 50% of the emissions from ICE
vehicles), yet there is the potential for localized concentration
increases near point sources. Generating electricity to charge
EVs from renewable sources reduces these risks, as there are no
NO, or SO, emissions from solar, wind, hydroelectric, or
nuclear power sources. Efforts to expand EV access must
simultaneously increase deployment of renewable energy for
realization of the full air quality benefits of vehicle
electrification.

Optimizing diurnal vehicle charging patterns can further aid
in minimizing the NO, and SO, emissions of additional elec-
tricity generation. Daytime charging allows a greater fraction of
supplied electricity to be sourced from renewable energy and
results in lower emissions than evening or night charging in
most locations, with the 2018-19 average difference in carbon
emissions (which likely correlate to a degree with NO, and SO,
emissions) between midday and nighttime charging in the U.S.
being 40%.*" Infrastructure to expand access to charging facil-
ities during hours of non-peak demand (e.g., workplace
charging) can therefore serve to reduce both the carbon emis-
sions and air quality risks of increasing vehicle electrification.
Future research can further investigate methods such as
charging timers and time-of-use pricing to promote vehicle
charging schedules that maximize the use of renewable rather
than fossil energy to meet increased demand.

Continued air quality monitoring will reveal how the
magnitudes of the effect sizes of vehicle electrification on
pollution levels will evolve with rising EV adoption and shifting
electricity sourcing. While linearity between NO, emissions and
concentrations has been observed previously,” a plateauing
impact of electrification in regions with low pollutant concen-
trations approaching background levels is plausible. Addition-
ally, the magnitudes of the effect sizes of EV adoption on air
quality are expected to be dependent on the electricity genera-
tion portfolio. A grid that relies upon an increasingly larger
fraction of renewable energy is expected to result in greater
decreases in NO,, O3, and PM, 5 per EV replacement of an ICE
vehicle; conversely, a grid powered by a larger fraction of fossil
energy sources is expected to result in smaller pollutant
declines. The future impacts of EV adoption on air quality are
expected to be determined in large part by the sources of elec-
tricity generation, such that policies aiming to improve air
quality with greater EV deployment must expand renewable
energy deployment in tandem.

Furthermore, expanded air quality monitoring can allow
future research to investigate regional or state-level impacts and

This journal is © The Royal Society of Chemistry 2025
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effect sizes, as the air quality impacts of EVs are likely to vary by
local climate and topography. For instance, NO, emissions from
ICE vehicles are higher in cold ambient temperatures;* conse-
quently, one may expect a larger magnitude of NO, reduction
for replacement of ICE vehicles with EVs in cold climates
(comparing areas with equal NO, emissions from electricity
generation). Additionally, electricity sourcing and marginal
emissions factors differ by region,*” making the magnitudes of
net NO, and PM, 5 decreases regionally dependent. Regional
analysis was not possible in this work due to the limited
number of total sites with both air quality and EV registration
data for 2018 through 2023 available. Expanding the network of
monitoring sites that report to EPA Air Data, in addition to
creating a centralized database of state EV registrations, could
allow for such analysis of regional-level differences, and access
to proprietary datasets of vehicle type and driving history would
further refine the analysis. In conclusion, the findings of this
work support efforts to expand EV access and charging across
the U.S., with a concurrent transition to renewable energy, to
promote improvements in air quality.
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