Energy & Environmental Science

CORRECTION

View Article Online

Cite this: DOI: 10.1039/d5ee90077h

Correction: Carbon footprint of oil produced through enhanced oil recovery using carbon dioxide directly captured from air

Antonio Gasós, a Ronny Pini, b Viola Becattinia and Marco Mazzotti*a

DOI: 10.1039/d5ee90077h

Correction for 'Carbon footprint of oil produced through enhanced oil recovery using carbon dioxide directly captured from air' by Antonio Gasós *et al.*, *Energy Environ. Sci.*, 2025, https://doi.org/10.1039/d5ee01752a.

rsc.li/ees

In section 2.3 of the manuscript, immediately following eqn (5), the text contained an error in the following paragraph.

'Here, ρ_j and ρ_{CO_2} are the densities of phase j and of CO_2 at relevant temperature and pressure levels, respectively, while M_j and M_{CO_2} are their molar masses, in mass per mole of carbon. We use $M_o = 14$ g mol⁻¹ (for CH₂, the building block of oil), $M_g = 16$ g mol⁻¹ (methane), and $M_w = 0$ g mol⁻¹ (water, being carbon-free).'

This should instead read as follows.

'Here, ρ_j and ρ_{CO_2} are the densities of phase j and of CO_2 at relevant temperature and pressure levels, respectively, while M_j are the molar masses, in mass of j per mole of carbon contained in j. We use $M_o = 14$ g mol⁻¹ (for CH₂, the building block of oil), $M_g = 16$ g mol⁻¹ (methane), and $M_w = \infty$ g mol⁻¹ (water, being carbon-free).'

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Institute for Energy and Process Engineering, ETH Zurich, 8092 Zürich, Switzerland. E-mail: marcom@ethz.ch

^b Department of Chemical Engineering, Imperial College London, SW7 2AZ London, UK