
This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15205

Cite this: Phys. Chem. Chem. Phys.,

2024, 26, 15205

Code generation in ORCA: progress, efficiency
and tight integration†

Marvin H. Lechner, *‡ Anastasios Papadopoulos, *‡ Kantharuban Sivalingam,
Alexander A. Auer, Axel Koslowski, Ute Becker, Frank Wennmohs and
Frank Neese *

An improved version of ORCA’s automated generator environment (ORCA-AGE II) is presented. The

algorithmic improvements and the move to C++ as the programming language lead to a performance

gain of up to two orders of magnitude compared to the previously developed PYTHON toolchain.

Additionally, the restructured modular design allows for far more complex code engines to be

implemented readily. Importantly, we have realised an extremely tight integration with the ORCA host

program. This allows for a workflow in which only the wavefunction Ansatz is part of the source code

repository while all actual high-level code is generated automatically, inserted at the appropriate place in

the host program before it is compiled and linked together with the hand written code parts. This

construction ensures longevity and uniform code quality. Furthermore the new developments allow

ORCA-AGE II to generate parallelised production-level code for highly complex theories, such as fully

internally contracted multireference coupled-cluster theory (fic-MRCC) with an enormous number of

contributing tensor contractions. We also discuss the automated implementation of nuclear gradients

for arbitrary theories. All these improvements enable the implementation of theories that are too

complex for the human mind and also reduce development times by orders of magnitude. We hope

that this work enables researchers to concentrate on the intellectual content of the theories they

develop rather than be concerned with technical details of the implementation.

Introduction

The boundaries of what is possible in quantum chemistry are
continually being expanded, not least through advancements
in microprocessor technology. Over the last decades, feasible
ab initio wave function-based calculations have progressed
from simple, SCF-level calculations in small basis sets1,2 to
production level application of advanced correlated methods.
For instance, the coupled cluster (CC) model can now be
applied to medium to large molecules in triple-z or even larger
basis sets,3 or even very large molecules when local approxi-
mation techniques are employed.4,5 This development has been
fostered in great part by the advances in CPU processing power,
commonly described by Moore’s law.6 It is the opinion of
the authors that these advances bring more and more compu-
tationally demanding theories into the realm of ‘‘routinely
feasible’’ computations. These theories include internally

contracted7,8 (ic) multireference (MR) theories and gradients
of higher-order CC models, the implementation of which is,
in fact, beyond human capacity. Traditionally, a quantum
chemical theory would be reformulated for and implemented
in computer code entirely manually, which is an onerous and
error-prone9 approach. In light of these challenges, tools have
been developed that either simplify or completely automate the
implementation process, which we will refer to as automatic
code generation. These tools automate at least one of the
following general steps needed to go from theory on paper to
computer code: (i) derivation of the working equations from an
Ansatz (equation generation), (ii) manipulation thereof to
reduce the computational cost (factorization), and (iii) the
actual code generation. We will adopt this distinction through-
out the rest of this paper and expand on each of the steps
below. For a more detailed introduction to the field of auto-
matic code generation, we also recommend the excellent review
of Hirata.10

Automatic derivation of the working equations from a theo-
retical Ansatz is the most straightforward part, since it mostly
relies on a fixed set of rules that can be applied deterministi-
cally. Very early on in the development of equation generation11

Wick’s theorem12,13 was used in order to obtain the explicit

Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für

Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.

E-mail: frank.neese@kofo.mpg.de

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d4cp00444b

‡ These authors share first authorship.

Received 30th January 2024,
Accepted 6th May 2024

DOI: 10.1039/d4cp00444b

rsc.li/pccp

PCCP

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue

https://orcid.org/0000-0002-1676-2718
https://orcid.org/0000-0001-7156-1874
https://orcid.org/0000-0002-2235-8826
https://orcid.org/0000-0001-6012-3027
https://orcid.org/0009-0005-3636-3799
https://orcid.org/0000-0003-4691-0547
http://crossmark.crossref.org/dialog/?doi=10.1039/d4cp00444b&domain=pdf&date_stamp=2024-05-29
https://doi.org/10.1039/d4cp00444b
https://doi.org/10.1039/d4cp00444b
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP026021

15206 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

forms of the tensor contractions. Even today most existing
toolchains14–28 rely on the same principle. Despite this preva-
lence of Wick’s theorem, the first automated equation genera-
tors used diagrammatic approaches, mainly to avoid tedious
and error prone derivations by hand.29–31 However, these early
developments lack further equation processing and code gene-
ration. A major benefit of diagrammatic generators is that only
topologically different contractions are generated, i.e., less
work needs to be done in finding equivalent terms in the
factorization step.16 More recent examples of such equation
generators are Smith16 by Shiozaki and co-workers or the
arbitrary-order CC program by Kállay and Surján (MRCC).32

In our own work, we have used neither approach, but instead
relied on plain and simple (anti-)commutation rules between
second-quantized operators that are applied recursively until
all non-target labels have been processed.33 This strategy was
adopted in the first version of the ORCA-AGE toolchain and has
the advantage that it can be applied equally well to single- or
multireference reference functions.34

The factorization step is arguably the most crucial in the
toolchains, since it ensures the proper, minimal computational
scaling with system size and significantly reduces the computa-
tional cost of the generated code. Unfortunately, finding the
global minimum in terms of computational cost constitutes
an NP-hard problem.35 Hence, virtually all toolchains rely
on heuristics to reduce the complexity of this problem. Core
concepts were developed early on, e.g., by Janssen and
Schaefer11 or Kállay and Surján.32 However, perhaps the most
complete overview can be found in the literature describing the
tensor contraction engine (TCE),14,15 which sequentially uses
detection of duplicates, strength reduction, factorization (i.e.,
application of the distributive law), and common subexpres-
sion elimination to arrive at the final working equations before
generating code.14 Tensor contractions are often canonicalized
by relabelling and permuting the indices and tensors in order
to aid in detecting duplicate terms, cancelling terms and
common subexpressions, especially when taking tensor sym-
metry into account.11,14,35–37 A detailed analysis of common
subexpression elimination was published by Hartono et al.38

Overall, these heuristics perform quite well,39 although they
will generally not reach the same efficiency as the best hand-
optimized40 code. More advanced schemes have been
discussed,35 but, to the best of our knowledge, only a single
tool that uses a genetic algorithm to sample the complete
factorization space has been presented to date.39 An overview
of the algorithms used in the AGE can be found in the original
publication.34

Finally, the equations that have been derived, canonicalized
and factorized in the previous steps must be evaluated (in the
correct order) in order to arrive at the desired implementation
of the target quantity, which may, for example, be an energy or
a residual. To this end, we can either generate code (generally
for a compiled programming language) or use an interpreter to
evaluate the tensor contractions. Generated code frequently
relies on further libraries, most often on the basic linear
algebra subroutines (BLAS)41 to speed up the evaluation

of the tensor contractions. BLAS can be extended to arbitrary
(binary) tensor contractions,42 and even faster algorithms have
been developed for the same sake.43 As an intermediate
between low-level generated code and interpreters, specialized
tensor contraction libraries have emerged that more or less
completely take care of the computational kernel such that
code generation can be greatly simplified. Examples of such
libraries include the CTF,44,45 libtensor,46 LITF,47 TCL,43,48 and
TiledArray.49,50 Interpreters even further remove the connection
of the contractions to the (compiled) code or hardware by fully
abstracting away the latter two, requiring just the contractions
and the input quantities. This concept is perhaps best illu-
strated with the super instruction assembly language (SIAL) of
ACES III, which is a full-fledged virtual machine and parallel
programming model51 used to evaluate generated and hand-
written contractions.52,53 An integrated tensor framework (ITF)
has been reported by Werner and co-workers for the imple-
mentation of an internally contracted multireference configu-
ration interaction (ic-MRCI) method.18,54 Other toolchains with
interpreters using string-based methods31,55 include the gen-
eral contraction engine (GeCCo) by Köhn and co-workers, first
to appear in the context of explicitly correlated coupled cluster
methods,27,28 and Kállay and Surján’s arbitrary-order CC
program.32,56

To conclude the introduction, we now briefly discuss appli-
cations of existing code generators. One of the most complete
implementations remains the TCE,14,15 which encompasses
all the steps outlined above. Generated code exists in
NWChem,57,58 and examples include higher-order CC methods
(up to (EOM)-CCSDTQ)59 or combined CC theory and MBPT.60

The SMITH generator by Shiozaki and co-workers,16,17 which can
be viewed as the successor to the TCE,61 is another feature-
complete tool that was initially used to implement CCSD-R12,61

and later extended to state-specific17 and multistate62 CASPT2
gradients. Around the same time, the SQA, used for the auto-
matic implementation of CT theory19,20 and later for the MR-
ADC(2) method,63,64 and FEMTO codes21–23 were introduced.
FEMTO has specialized features to work with cumulant recon-
structions that appear in internally contracted DMRG-MRCI
theory, and has also been extended to pair-natural orbitals
(PNOs).23 Also noteworthy are the GeCCo27,28 and APG24–26

codes, which have both been used to implement highly
complex ic-MR methods, such as fully internally contracted
multireference coupled cluster theory (fic-MRCC)65 and MR-
EOMCC66–69 theory, respectively. More recently, GeCCo and ITF
have been used together to develop an optimised fic-MRCC
implementation.70 For a long time, the APG and SQA were the
only tools that supported Kutzelnigg–Mukherjee normal
order,71 with generalized normal order (GNO) being taken up
more recently by the Wick&d program72 of Evangelista. Last but
not least, the first version of the ORCA-AGE toolchain was
introduced close to seven years ago.34 Different multireference
contraction schemes were compared with its support,73 and the
STEOM method based on an unrestricted Hartree–Fock (UHF)
reference has been implemented74 with the aid of the APG into
the ORCA75–77 program package.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15207

In this article, we describe a completely rewritten and vastly
improved ORCA-AGE toolchain, henceforth referred to as
ORCA-AGE II. Thus, we first outline the differences to the
previous version of the toolchain and the numerous improve-
ments that have been incorporated. Furthermore, we will
compare its features to other existing solutions. Then, we
showcase recent developments, most of which have only been
possible through the improvements made to the toolchain.
We will finish with a holistic view of and perspective for the
development process in quantum chemistry, including our
vision for the ORCA75–77 program package. Lastly, we conclude
by summarizing the main points of this article.

Software description

The ORCA-AGE II toolchain has been rewritten from scratch,
a decision that has been motivated by the experience gained
while working with its first version.34 In this section, we first
recapitulate the layout of ORCA-AGE II, which has mainly
undergone streamlining, before we discuss the new internal
algorithms, equation and code generators. Further information
on the code generation process can be found in the preceding
publication.34

From an architectural standpoint, ORCA-AGE II still uses the
modular structure of its predecessor, organized into three
groups: equation generation, equation processing (factoriza-
tion), and code generation. Each of these three steps is further
split into smaller executables that only perform a very specific
subtask, e.g., merging several contractions into one by exploit-
ing tensor symmetry. This layout allows highly flexible work-
flows, where each step can be turned on or off depending on
the user’s preference, although all steps are enabled by default
to achieve the best possible performance of the generated code.
In turn, each of these steps may have optional features like
debug output or different contraction engines, which are con-
trolled through easy-to-understand command line options as
well. Furthermore, the user can easily verify or modify all
intermediate stages, which are simply text files containing a
single contraction per line, as necessary. An example of such an
equation file is given in Scheme 1.

Here, the indices indicate the orbital space they belong to,
using i, j, k, l for inactive, t, u, v, w for active, and a, b, c, d
for virtual orbitals. Furthermore, any index has a number asso-

ciated with it, so that a unique index can always be constructed.
Finally, a capitalised label indicates a summation index.

While the general structure of the toolchain has remained
largely unchanged, the code itself is an entirely new develop-
ment. The main reason for redeveloping the software lies in the
long code generation times of the previous version, which
required about one month to generate highly complicated
theories such as fic-MRCC, leading to a slow overall develop-
ment and debugging process. This was addressed by improving
the internal algorithms throughout all factorization and gen-
eration steps. For example, we introduced a hash-based data
compaction method for eliminating duplicate intermediates
generated by the initial, term-wise factorization step. This
reduces the scaling from a quadratic to an expected linear-
time algorithm, and consequently to a speedup of about two
orders of magnitude for the fic-MRCC method in this step
alone. While this example shows the biggest improvement over
the old toolchain, other parts, such as the detection of tensor
symmetry, have received improvements of up to one order of
magnitude as well. To further ensure good use of multicore
architectures, we use OpenMP to allow for thread-based paral-
lelism in the toolchain. Lastly, the new toolchain has been
written in the C++ programming language, which together with
an improved factorization algorithm, is responsible for a large
part of the speedups compared to the previous implementation
that relied on PYTHON. Another benefit of relying on C++ is that
ORCA-AGE II fits far better into the ORCA ecosystem through a
more homogeneous and cleaner software structure. Taken
together, the parallelized and improved C++ code allows us to
generate and process highly complex equations in minutes
rather than weeks that were required for the serial PYTHON code.

Internally, the executables rely on a core library that provides
the required basic functionality to read/write, represent, and
manipulate tensor contractions as a set of high-level classes and
functions. This library, and by extension the entire toolchain, has
no limitations in terms of number of indices per tensor, allowed
tensor symmetries, or number of source tensors per contraction,
to name a few features. Consequently, any theory that can be
written as a set of tensor contractions can be implemented with
ORCA-AGE II. Also, despite this generality, even costly operations
such as determining the tensor symmetry of an intermediate
based on its source tensors are so fast that they can be routinely
used for hundreds of tensors with, for example, ten indices, as is
the case in fic-MRCC theory (further discussed below).

In addition to the improvements to the underlying infra-
structure, the functionality (especially of the code generator)
has been extended as well. In terms of performance improve-
ments, the recent work falls into the two categories of compute
and I/O optimizations. We first discuss the compute optimiza-
tions, which are mainly geared towards making BLAS calls
more pervasive in the generated code. To this end, we use
the fact that essentially every binary tensor contraction can be
written as a matrix–matrix multiplication,

Cij ¼
X
k

AikBkj ; (1)
Scheme 1 Equation file for RHF CID Sigma equations.

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15208 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

in which the ‘‘compound’’ indices i, j, k may refer to none, one,
or multiple actual indices. As a result, outer products and
matrix–vector and vector–vector multiplications can be viewed
as special cases thereof. Such a scheme has already been
discussed in the literature, and is generally referred to as
‘‘transpose–transpose–DGEMM–transpose’’ (TTGT), since (in
the worst case) we might need to reorder (transpose) the axes
(indices) on both source tensors and the target tensor.42,43 To
the best of our knowledge, none of the previous implementa-
tions are as general as the current implementation in ORCA-
AGE II, as our implementation also allows for further edge
cases (trace operations, repeated indices, . . .) as well as an I/O-
aware strategy for indices associated with an I/O read/write
penalty. Moreover, indices can be individually pulled out from
the tensor contraction to be processed in outer for-loops, which
is highly useful for integrating the TTGT engine with other
specialized functions as well as enabling relatively straight-
forward parallelization over these outer loops. Effectively,
such situations are handled automatically by reordering and
‘‘tiling’’14 the tensors such that the chunks can be treated most
efficiently with DGEMM operations that are as large as the
available memory allows working on tensors that are trivial to
fetch from disk or memory. This scheme is especially useful for
compute-bound scenarios,43 e.g., contractions involving large
and high-dimensional objects such as the four- and five-body
densities, g4 and g5, respectively. Naı̈ve loop-based code, by
construction, will lead to many cache misses and is generally
up to a factor of 100 slower than the optimized, BLAS-based
contraction scheme, especially tensors that require many MBs-
or even GBs of storage.

Also in the category of compute optimizations are further
hand-coded routines. Additional contraction patterns have
been added to the ‘‘ContractionEngine’’ functionality for
increased performance, which complement the features already
available since the first version of the code generator.34 These
patterns are especially useful for the generation of analytic
gradients components (vide infra).

On the note of I/O improvements, we should first delineate
how ORCA-AGE II deals with a mixed strategy of keeping some
tensors on disk and some entirely in memory. Ultimately, the
decision is up to the end user, but by default 4-index quantities
are stored on disk with two indices encoding disk access, for
which a matrix can be retrieved. In the ORCA framework these
objects are called ‘‘matrix containers’’ and they have been part
of the ORCA infrastructure since the earliest days of the
correlation modules. The matrix containers are intrinsically
‘‘smart’’, in that they automatically take care of storage of the
data in memory or on disk in an uncompressed or compressed
format and they also distribute data across the available disks
with the programmer that uses these objects having to write a
single line of additional code. The tools can deal with sym-
metric or unsymmetric matrices, vectors and, ultimately, with
arbitrary dimensional tensors via another tool, we have called
‘‘MultiIndex’’ that allows us to generate arbitrarily complex
compound indices from any set of individual indices. For
example, given Xrs

pq and using the lower indices for access, we

can load matrices of r � s for a given index pair p, q. In ORCA-
AGE II, these quantities are generally stored on disk to integrate
nicely with the rest of the ORCA infrastructure as well as to
avoid memory bottlenecks (e.g., the 4-external integrals (ab|cd)
already exceed 10 GB for nvirt 4 188 virtual orbitals in double
precision).

We optimized the I/O performance by both hand-coded
contractions and a new on-the-fly resorting scheme. The
hand-coded functions are mostly geared towards copy/add
operations,

Cij. . . ’ AP(ij. . .), (2)

which repeatedly occur through the application of the distri-
butive law. Here, P(ij. . .) denotes an arbitrary permutation of
indices on the source tensor. These functions are tailored to the
4-index tensors that are stored on disk. Throughout the gener-
ated code, we try to minimize contractions that have different
addressing indices by determining the best index order on the
intermediates, but I/O-intensive contractions such as

Xrs
pq ’ Ypq

rs , (3)

where none of the addressing (lower) indices match, cannot
always be avoided. Addressing indices refer to indices that are
used to retrieve a matrix from a data container. For instance,
tensor Xrs

pq in eqn (3) would have addressing indices p, q that are
used to retrieve a matrix (typically from disk) with dimensions
r, s. In a naı̈ve implementation, this will lead to I/O operations
being done in inner loops, with the associated increase in
runtime due to disk latency and unnecessary repetitions of
I/O operations. To alleviate the I/O bottleneck of these addi-
tions, special functions were coded that read batches of the
tensors up to the allowed memory limit, do the operation in
memory, and then efficiently write the results back to disk.

A more general scheme was also introduced that proceeds
by resorting the on-disk quantities on the fly. The underlying
inefficiency is the same as discussed above, namely, that non-
matching indices are associated with I/O operations. In the
general case, however, we do not opt for a batching scheme, but
rather exploit the fact that reordering such a 4-index tensor only
scales as O N4

� �
and can be done itself with efficient hand-

written functions. Virtually all contractions that use such stored
quantities scale higher than O N4

� �
; and hence the additional

reordering step is negligible in cost. Furthermore, these
resorted matrix containers can be kept until the end of the
computation to be reused in multiple contractions, at the
expense of additional disk space being used. Nonetheless, since
disk space is generally not limiting for highly correlated the-
ories, we found this strategy to improve computational effi-
ciency by at least a factor of 10 for larger examples while
increasing disk space by only a marginal amount.

Compared to the first ORCA-AGE toolchain, the updated
version has also been integrated much more tightly with the
main ORCA source code. The philosophy of this approach will
be discussed in detail at the end of this paper.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15209

Comparison to other toolchains

To summarize the features of ORCA-AGE II and show how it
relates to other code generators used in quantum chemistry, we
summarized the main code generation features in Table 1.
To keep the size of the table manageable, we only included
other codes that are sufficiently complete or have been more
widely used.

We now highlight a few salient features of the tools from
Table 1. First, only ORCA-AGE relies on a commutator-based
engine to derive the working equations for simplicity and
generality. However, using a Wick’s theorem or diagram-
based engine can be significantly faster and reduce the time
required to remove equivalent contractions. Hence, efforts to
develop such an engine are ongoing for ORCA-AGE II. Second,
great care is placed by all toolchains on a complete factoriza-
tion toolchain, which is a testament to the importance of this
step in obtaining a performant implementation. Third, the
actual evaluation part either relies on generation of actual code
or simply interprets the factorized equations akin to a specia-
lized virtual machine. To this end, all toolchains except for one
rely on BLAS to maximize computational efficiency. Paralleliza-
tion support, however, is not implemented for all toolchains
since doing so in a completely automated fashion is highly non-
trivial.

Recently implemented methods with
ORCA-AGE II

With the new, improved ORCA-AGE II toolchain, we now find
ourselves in a position where large, complicated theories can be
implemented quickly into the ORCA software package. In this
section, we will demonstrate a few examples, starting with the
CCSDT method and its various approximations. Then, going on
to theories that contain more tensor contractions, we show how
ORCA-AGE II can also generate gradients for CI and CC theories
with minimal effort. We then conclude this section with details
of our fic-MRCC implementation, which contains so many
terms that it is beyond human capacity to implement.

CCSDT

As more powerful hardware and successively more efficient
implementations of post-HF methods started being available,
methods like CCSD(T) established themselves as what today is
called ‘‘gold standard’’ in quantum chemistry.79 One aspect
that can be considered as crucial in this respect is the avail-
ability of excitations higher than doubles, and hence, especially
during the 1980s many pioneering efforts were made towards
efficient and powerful implementations of variants of CCSDT
methods and beyond, like CCSDT(Q).80 In line with some of the
existing multireference approaches, CCSDT and CCSDTQ ener-
gies and their analytical derivatives are among the most
complex and challenging algorithms that have been implemen-
ted and optimized by hand.81,82 T

ab
le

1
O

ve
rv

ie
w

an
d

co
m

p
ar

is
o

n
o

fs
e

ve
ra

lc
o

d
e

g
e

n
e

ra
to

rs
u

se
d

in
q

u
an

tu
m

ch
e

m
is

tr
y

w
it

h
O

R
C

A
-A

G
E

II.
A

n
‘x

’i
n

d
ic

at
e

s
th

at
th

e
fe

at
u

re
o

ft
h

at
co

lu
m

n
is

su
p

p
o

rt
e

d
b

y
th

e
so

ft
w

ar
e

,a
‘‘—

’’
si

g
n

ifi
e

s
th

e
ab

se
n

ce
,a

n
d

‘‘n
/a

’’
st

an
d

s
fo

r
‘‘n

o
t

ap
p

lic
ab

le
.’’

Fo
r

th
e

e
q

u
at

io
n

g
e

n
e

ra
ti

o
n

co
lu

m
n

s,
w

e
in

d
ic

at
e

w
h

e
th

e
r

co
m

m
u

ta
to

r
al

g
e

b
ra

,W
ic

k’
s

th
e

o
re

m
w

it
h

n
o

rm
al

o
rd

e
r,

o
r

d
ia

g
ra

m
s

ar
e

u
se

d
to

d
e

ri
ve

th
e

w
o

rk
in

g
e

q
u

at
io

n
s.

In
th

e
fa

ct
o

ri
za

ti
o

n
st

e
p

,t
h

e
co

d
e

s
m

ay
su

p
p

o
rt

d
e

te
ct

io
n

o
f

d
u

p
lic

at
e

s,
st

re
n

g
th

re
d

u
ct

io
n

fo
r

te
n

so
r

co
n

tr
ac

ti
o

n
s,

u
si

n
g

th
e

d
is

tr
ib

u
ti

ve
la

w
(s

o
m

e
ti

m
e

s
ca

lle
d

‘‘f
ac

to
ri

za
ti

o
n

’’)
to

re
d

u
ce

th
e

p
re

fa
ct

o
r,

an
d

(s
u

b
)e

xp
re

ss
io

n
e

lim
in

at
io

n
.F

o
r

co
d

e
g

e
n

e
ra

ti
o

n
,w

e
in

d
ic

at
e

w
h

e
th

e
r

th
e

g
e

n
e

ra
to

r
d

ir
e

ct
ly

p
ro

d
u

ce
s

‘‘p
la

in
’’

co
d

e
,i

.e
.,

co
d

e
n

o
t

re
ly

in
g

o
n

e
xt

e
rn

al
lib

ra
ri

e
s,

o
r

w
h

e
th

e
r

it
u

se
s

e
xt

e
rn

al
lib

ra
ri

e
s

o
r

in
te

rp
re

ts
th

e
e

q
u

at
io

n
s

d
ir

e
ct

ly
.W

e
fu

rt
h

e
r

in
d

ic
at

e
if

a
st

ri
n

g
-b

as
e

d
ap

p
ro

ac
h

is
u

se
d

,a
n

d
w

h
e

th
e

r
th

e
B

LA
S

lib
ra

ry
is

e
m

p
lo

ye
d

.L
as

tl
y,

w
e

sp
e

ci
fy

w
h

e
th

e
r

p
ar

al
le

liz
e

d
co

d
e

ca
n

b
e

p
ro

d
u

ce
d

.
T

h
e

m
ai

n
re

fe
re

n
ce

s
fo

r
th

e
p

ro
g

ra
m

s
ar

e
:

FE
M

T
O

,2
1–

2
3

SQ
A

,19
Sm

it
h

3
,17

,7
8

Sm
it

h
,16

,6
1

T
C

E
,15

G
e

C
C

o
,2

7
,2

8
O

R
C

A
-A

G
E

,3
4

O
R

C
A

-A
G

E
II

(t
h

is
w

o
rk

),
M

R
C

C
5

6

Pr
og

ra
m

E
qu

at
io

n
ge

n
er

at
io

n
Fa

ct
or

is
at

io
n

C
od

e
ge

n
er

at
io

n

C
om

m
u

ta
ti

on
W

ic
k/

N
O

D
ia

gr
am

s
D

u
pl

ic
at

es
St

re
n

gt
h

re
d

u
ct

io
n

D
is

tr
ib

u
ti

ve
la

w
(S

u
b)

ex
pr

es
si

on
el

im
in

at
io

n
‘‘P

la
in

’’
co

d
e

In
te

rp
re

te
r

St
ri

n
g

B
LA

S
Pa

ra
ll

el
Sp

at
ia

l
sy

m
m

et
ry

C
SF

s
Y

ea
r

FE
M

T
O

—
x

—
x

x
Pa

rt
ia

l
Pa

rt
ia

l
x

—
—

x
x

x
—

20
13

SQ
A

—
x

—
x

x
Li

m
it

ed
—

x
—

—
x

—
x

x
20

09
Sm

it
h

3
—

x
In

te
rn

al
a

n
/a

x
x

x
x

—
—

x
x

—
x

20
15

Sm
it

h
—

—
x

n
/a

x
x

x
x

—
—

x
x

x
n

/a
20

08
T

C
E

—
x

—
x

x
x

x
x

—
—

x
x

x
n

/a
20

03
G

eC
C

o
—

—
x

In
te

rn
al

a
x

x
x

x
—

x
x

x
—

x
—

20
08

O
R

C
A

-A
G

E
x

In
pr

og
re

ss
—

x
x

x
x

x
—

—
x

x
—

x
20

17
,

20
24

M
R

C
C

—
—

x
n

/a
x

x
x

—
x

x
—

x
x

—
20

01

a
W

h
il

e
ge

n
er

at
in

g
te

rm
s

w
it

h
W

ic
k’

s
th

eo
re

m
,

to
po

lo
gi

ca
ll

y
eq

u
iv

al
en

t
te

rm
s

(d
ia

gr
am

s)
ca

n
be

re
co

gn
iz

ed
an

d
co

m
bi

n
ed

.

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15210 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

Hence, it is not surprising, that many of the early computer-
aided implementation techniques in quantum chemistry
focused on generating higher order coupled cluster methods
or MR-CC implementations. The CCSDT method can be viewed
as a standard example for high complexity of equations
with numerous terms, complex tensor contractions and high-
dimensional wavefunction parameters. For this reason, we will
discuss the ORCA AGE implementation of the UHF CCSDT-1
and CCSDT energies in detail in the following. This does not
only present an illustrative example but also demonstrates the
versatility and simplicity of the tools available and allows for a
conceptual comparison with other code generation tools.

Besides perturbative triples corrections, iterative CCSDT
approximations like the CCSDT-N (N = 1,2,3 and 4) have been
proposed as a systematic hierarchy of approximations with
reduced computational effort.83–89 While CCSDT-1, 2 and 3
exhibit O N7

� �
scaling, CCSDT-4 includes T3 - T3 terms which

scale as O N8
� �

and only two contributions to the triples
equations are excluded from the full CCSDT amplitude equa-
tions. In order to generate all of these approximations, it is
essential that the generation tool allows to evaluate the nested
commutator expressions from the Baker–Campbell–Hausdorff
(BCH) expansion as well as the addition of separate commu-
tator terms to an existing set of equations. ORCA-AGE II can do
both as we will show in the following.

Before going into the full input listing for the CCSDT-N
theories, we will start with UHF-CCSD to show a simplified
connection to the conventional equations (Scheme 2). This is
accomplished by simply specifying the maximum level of
nested commutators that should appear in the energy and
residual equations in $order_E and $order_residuals, respec-
tively. Lastly, each $class line provides an identifier, an ampli-
tude, the excitation operators contained in the cluster operator
T̂, and (optionally) contravariant projection functions90 for the
residuals after a semi-colon. The E-operators contained therein
typically refer to spin-traced operators Êp

q, but in the case of
UHF references they refer to pairs of elementary creation and
annihilation operators in spin–orbital basis, âpsâqs. The rest of
the infrastructure is then able to set up and evaluate all nested
commutator expressions of the defined amplitudes with the
Hamiltonian in a BCH expansion. This represents the conven-
tional CCSD expressions,

hFa
i |e�(T̂1+T̂2)Ĥe(T̂1+T̂2)|0i = |0i, (4)

hFab
ij |e�(T̂1+T̂2)Ĥe(T̂1+T̂2)|0i = |0i. (5)

The corresponding expression of all triples amplitudes
is shown in Scheme 3. This will, in addition to the terms in

eqn (4) and (5) include the triples equation and contributions
to the singles and doubles amplitudes as:

hFa
i |e�(T̂1+T̂2+T̂3)Ĥe(T̂1+T̂2+T̂3)|0i = 0, (6)

hFab
ij |e�(T̂1+T̂2+T̂3)Ĥe(T̂1+T̂2+T̂3)|0i = 0, (7)

Fabc
ijk |e�(T̂1+T̂2+T̂3)Ĥe(T̂1+T̂2+T̂3)|0i = 0. (8)

The CCSDT-1 (more specifically CCSDT-1a) equations are
characterized by an approximate triples treatment for which, in
addition to the CCSD equations, two terms are included in the
triples equations, and one term is included which couples the
T3 amplitudes to the singles and one term which couples T3

to the double amplitudes.
As any commutator, these can be added separately in a term-

by-term manner as outlined in Schemes 3–6 (see the ESI†), this
time, invoking our equation generation tool directly to generate
each term.

ta
i ’ hFa

i |[Ĥ, T̂3]|0i. (9)

tab
ij ’ hFab

ij |[Ĥ, T̂3]|0i. (10)

tabc
ijk ’ hFab

ij |[F̂, T̂3] + [Ĥ, T̂2]|0i. (11)

Note that, in contrast to the MRCC generator tool by Kállay and
Surján,32 ORCA-AGE is not able to generate arbitrary-order CC
code, as the solver requires hand-coded infrastructure to per-
form a DIIS procedure including all amplitudes in the residual.
For this purpose, internal data structures for tensors of rank
6 and 8 had to be explicitly defined, so that methods up to
CCSDTQ are supported.

This way, ORCA-AGE II has been used to extend the ORCA
functionality by CCSDT-1,2,3,4 and CCSDT as well as CC2 and
CC3 UHF energies. The implementations have been verified
against CFOUR91 and MRCC.

In order to test the limits of these implementations and the
performance, calculations were carried out on small alkene
chains and compared to CFOUR. As can be seen in Table 2, our
implementation shows turnaround times that are in the ball-
park of the CFOUR implementation, which is hand-coded and
known to be efficient. Further analysis of the computational
bottlenecks is underway and is expected to lead to further
efficiency gains in the generated code.

Initially, our triples implementation has been restricted to
spin–orbitals and UHF references. However, spin–orbital based
wavefunctions, such as UHF-CCSDT, suffer from spin contam-
ination, even with pure spin-references (such as ROHF refer-
ences). Much research has already gone into eliminating spin
contamination by spin adaptation, both for single and multi-
reference methods.93–96 Since the resulting theory contains
extra complexity, it is a prime candidate for code generation.
Our work on spin-adapted triple excitation containing theories
will be reported in due course.Scheme 2 Input required to generate the UHF CCSD equations.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15211

Generation of analytic gradients

A plethora of useful molecular properties can be calculated
as energy derivatives with respect to a certain perturbation,
such as nuclear gradients, harmonic vibrational frequencies or
nuclear magnetic shielding.97,98 While these derivatives can be
computed straightforwardly using numerical finite difference
methods, it is also quite costly. Calculating the first derivative
numerically requires a minimum of two energy calculations
along the perturbation, with more calculations needed for
increased accuracy. This quickly makes numerical gradient
calculations unfeasible for larger molecules. More importantly,
perhaps, is the fact that (especially higher-order) numeric
derivatives tend to become unstable. Therefore, being able
to evaluate analytic gradients is of vital importance, as their
cost should not exceed that of approximately a single energy
calculation.99

Especially relevant for computing properties accurately is
obtaining accurate geometries, which can be obtained through
geometry optimizations. This involves minimizing the nuclear
gradient, the energy derivative with respect to the nuclear
coordinates. Due to geometry optimizations being a routine
procedure in computational chemistry, nuclear gradients are a
logical target to apply code generation to.

Since one of the cornerstones of code generation and ORCA-
AGE II is generality, the aim was to build a general framework
that would support arbitrary-order CI and CC nuclear gradients
(and other derivatives). The starting point for gradients of non-
variational methods is to formulate a Lagrangian (CI is taken as
an example),100–105

LCI j;C; zð Þ ¼ hCjĤjCihCjCi þ
X
p4 q

zpqfpq (12)

which needs to be made stationary with respect to all para-
meters. The key point for code generation is to formulate the
stationary conditions and Lagrangian in contributions that are
expressed as projected equations or expectation values contain-
ing second-quantized operators and that can be generalized to

arbitrary order. An example is this formulation of the unrelaxed
1-body density matrix,

gpq = hC|Ep
q|Ci. (13)

With this restriction in mind, the gradient components that
have to be generated are the equations to determine the CI
coefficients/CC amplitudes and the unrelaxed density matrices.
Equation solvers, such as for the amplitude equations, will have
to be implemented by hand, as the AGE is not (yet) able to
incorporate them in the generated modules. This is also the
case for the so-called Z-vector equation, of which the solving
provides the orbital relaxation contribution, zpq.104 By reformu-
lating the CI energy functional in terms of the unrelaxed 1-body
reduced density matrix (1RDM), c and the 2-body reduced
density matrix (2RDM), C,

LCI ¼
X
pq

hpqgpq þ
X
pqrs

pqjrsð ÞGpr
qs þ

X
p4 q

zpqfpq (14)

it becomes clear that the orbital relaxation parameter can then
be folded into the unrelaxed density matrices to construct the
relaxed density matrices, c0 and C0,

LCI ¼
X
pq

hpq gpq
� � 0

þ
X
pqrs

pqjrsð Þ Gpr
qs

h i 0
; (15)

with,

gpq
� � 0

¼
gpq þ zpq; p4 q

gpq; p � q

(
(16)

Gpr
qs

h i 0
¼

Gpr
qs þ zpqdrsdr2i � zpqdrqdr2i; p4 q

Gpr
qs; p � q:

8<
: (17)

To obtain the final nuclear gradient expression, the deriva-
tive is taken with respect to the nuclear coordinates, R, while
using the orthonormal molecular orbitals (OMO) approach
to ensure that the overlap matrix, S, is well defined at every
geometry.106 This leads to the final expression of

L Rð Þ ¼
X
pq

h Rð Þ
pq gpq
� � 0

þ
X
pqrs

ðpqjrsÞ Rð Þ Gpr
qs

h i 0

þ
X
pq

S Rð Þ
pq Wpq;

(18)

with W being defined as

Wpq ¼ �
X
r

gpr
� � 0

hrq � 2
X
rst

ðptjrsÞ Grq
st½ �
0
: (19)

Scheme 3 Input required to generate the UHF CCSDT equations.

Table 2 Average Sigma iteration time using UHF CCSDT. All electrons
were correlated and a cc-pVTZ basis set was used.92 Calculations were
performed on an AMD EPYC 75F3 with 200 GB of RAM reserved

Alkene nbasis Program titeration (h)

Ethene 116 ORCA 1.2
CFOUR 0.95

Propene 174 ORCA 37.3
CFOUR 16.8

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15212 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

The superscript ‘‘(R)’’ on the integrals indicates that the deri-
vative with respect to R is taken in the AO basis. The densities
are therefore also first transformed to the AO basis before being
contracted with the integral derivatives. As can be seen from the
expression of the nuclear gradient, as long as the gradient can
be expressed in terms of density matrices, any kind of CI or
CC nuclear gradient can be generated up to arbitrary order.
Currently, the following nuclear gradients have been imple-
mented: RHF/UHF CID, CISD, CEPA(0), CCD, CCSD, as well as
UHF CISDT/CCSDT, all of which were verified against numer-
ical gradients as well as Kállay and Surján’s MRCC program.32

The major bottleneck of these nuclear gradients was the
2RDM due to the layout of the matrix containers involved in its
computation. Many contractions incurred a heavy I/O penalty
in addition to not being able to utilize BLAS. As described
above, this is where matrix containers can usefully be resorted
in O N4

� �
so that the most efficient BLAS operations are

performed and the I/O operations are minimized. Given that
already CCSD computationally scales as O N6

� �
, resorting will

not have a significant impact on the computational perfor-
mance of CC and CI theories. More importantly, the cost of
resorting will be heavily outweighed by the gain in performance
from being able to use BLAS operations. This resorting algo-
rithm also keeps track of other resorted containers, so that no
duplicates are created and so that they can be reused in other
contractions. As can be seen from Fig. 1, the speedup can easily
exceed a factor of 10–20 for larger system sizes.

To determine the efficiency of ORCA’s generated gradients,
they have been compared against the MRCC program’s, which
is able to generate these gradients on-the-fly for arbitrary order
CI/CC theories. This is in contrast with the AGE, which gene-
rates code for a specific order of CI/CC, which is compiled into
binary form prior to computation. The performance of both
gradients is rather similar for smaller systems (Fig. 2), but when
more basis functions are present, ORCA runs up to 20 times
faster. This is where the effect of the data resorting becomes
apparent since (i) the time to resort becomes negligible and (ii)
BLAS can generate significant returns on larger tensors due to
specialized multiplication methods. The lower performance
of the MRCC might be attributed to the in-core parts of the
calculation. At most 8 GB of memory is used for RHF CCSD,

which is sub-optimal according to the MRCC output. Thus, the
calculation becomes unfeasible for larger systems, whereas
ORCA stores everything on disk and only loads the tensors into
memory when needed. The UHF CCSD calculations were per-
formed with 50 GB of memory. ORCA outperforms the MRCC
gradients here as well despite MRCC not having to resort to
out-of-core algorithms. This could be ascribed to the AGE’s
ContractionEngine that is able to make optimal use of the
available memory. A comparison has also been made against
the hand-written CFOUR code.91,107 ORCA’s generated gradi-
ents perform approximately the same as CFOUR’s in the case of
RHF CCSD. While larger calculations are certainly possible, we
restricted the memory in CFOUR for consistency purposes such
that CFOUR was not able to complete calculations with more
than 258 basis functions. CFOUR does outperform ORCA by an
approximate factor of 3 in the case of UHF CCSD. Overall, the
generated code performs well, with it being able to handle
system sizes of around 300–400 basis functions. Single gradient
steps for these system sizes can be performed with a def2-
TZVP108 basis set within days on an AMD EPYC 75F3 CPU.
These results indicate that code generation is a viable way to
obtain reliable and performant code.

Internally contracted multireference
coupled-cluster theory

Throughout quantum chemistry, we always strive for faster and
more accurate theories to aid in our understanding of chemical
systems. As mentioned before, CCSD(T) has been quite uni-
versally established as the ‘‘gold standard’’ in the single refer-
ence domain. In the multireference regime, however, no clear-
cut ‘‘best’’ approach exists yet. Various approaches to transfer
the coupled cluster Ansatz to multireference wave functions
have been introduced,109 some dating back to the late 1970s
and early 80s.110–113 In our group, we focus on the internally
contracted variant since it has several desirable properties,
such as orbital invariance,114 a limited parameter space,65

and size-extensivity.115 Furthermore, fic-MRCC theory is known
to be significantly more accurate than fic-MRCI theory, even

Fig. 1 RHF CCSD 2RDM performance with and without resorting matrix
containers. The calculations were performed on linear alkanes of increas-
ing length with a def2-TZVP basis set.

Fig. 2 Comparison of single RHF/UHF CCSD analytic gradient step
between ORCA and MRCC on linear alkenes of increasing length in a
def2-TZVP basis set. All electrons were correlated and the calculations
were run in serial.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15213

when the BCH expansion of the similarity-transformed
Hamiltonian is truncated at quadratic terms.116

Given a zeroth-order wave function |0i obtained from a run
of a complete active space self-consistent field (CASSCF) calcu-
lation,

j0i ¼
X
I

cI FIj i; (20)

where |FIi are configuration state functions (CSFs), the Ansatz
for the coupled cluster wave function can be written as

|C = eT̂|0i, (21)

T̂ ¼ 1

2
t
ij
abÊ

a

i Ê
b

j þ t
ij
atÊ

a

i Ê
t

j þ
1

2
t
ij
tuÊ

t

i Ê
u

j

þ titabÊ
a

i Ê
b

t þ titauÊ
a

i Ê
u

t þ tituaÊ
u

i Ê
a

t

þ tituvÊ
u

i Ê
v

t þ
1

2
ttuabÊ

a

t Ê
b

u þ ttuavÊ
a

t Ê
v

u;

(22)

with the cluster operator T̂ written in Einstein’s summation
convention for repeated indices. The energy and residuals are
computed as in single-reference CC theory as the expectation
value of the similarity-transformed Hamiltonian or by project-
ing the transformed Hamiltonian with functions from all
excitation classes. To further simplify the theory, we also
truncate the BCH expansion after quadratic terms.65,114 The
resulting methodology is equivalent to scheme A from Hanauer
and Köhn65 omitting the reference relaxation. The outlined
theory is not size extensive, but can become fully size-extensive
with a minor modification.115 The latter is not considered in
the present implementation.

This theory is very difficult to implement due to its large
number of terms.65 The working equations are derived with
spatial orbitals using the elementary commutation rules of
spin-traced excitation operators,33

[Êp
q, Êr

s] = Êp
sd

r
q � Êr

qd
p
s . (23)

The residual equations in their implicit form are provided in
the supporting information. The presence of excitation opera-
tors involving active indices leads to a large number of non-
vanishing equations.65 In our formulation, fic-MRCC theory
has 159 173 terms before removing contractions redundant by
symmetry, and 49 186 terms after removal thereof. After factor-
ization, the resulting 65 848 tensor contractions are translated
to 3 765 810 lines of code. We remark that the number of
equations is vastly different from the implementation of

Hanauer and Köhn, who report 5020 terms prior factorization
for a CAS(6,6).65 In the latter an additional truncation based
on the number of active electrons limiting the rank of the
reduced density matrix in the diagrammatic representation is
employed, which can further reduce the number of equations,
e.g. to 3523 terms for a CAS(2,2). The issue is presently under
investigation.

A theory having so many terms places a high computational
workload on the code generator, which was the primary reason
for redeveloping the ORCA-AGE infrastructure. In particular,
removing duplicate intermediates in the equation factorization
step proved to be highly demanding, as that step creates 93 803
intermediates in the case of fic-MRCC theory, which are even-
tually pruned to 15 987 intermediates. In the previous version
of ORCA-AGE, a simple algorithm for detecting duplicates was
used that scaled as O N2

� �
; thus leading to impractically long

generation times of about one month. In the updated version,
this algorithm uses a hash table-based data compression
technique with expected linear time instead, reducing the time
to about 4 hours for the entire toolchain. In both cases, the
toolchain, which has time-limiting steps parallelized with
OpenMP threads, was run on 16 cores/32 threads.

If we now look at the generator from an end user’s perspec-
tive, generating the code is also much simpler. All that is
required is to define the excitation classes from eqn (22) in a
user-friendly input file, an example of which is given in
Scheme 4. Each line corresponds to an excitation class with
an identifier, the amplitudes, and the excitation operators for
that class. Optionally, contravariant projection operators90 can
be defined such that the projection functions are orthogonal to
the excitation space. The generator itself features code that can
create all necessary terms from the definition of the excitation
classes, be it the similarity-transformed Hamiltonian through
application of the BCH expansion, residuals through projection
or the energy equations. Hence, everything from changing the
cluster operator to the size of the BCH expansion is simple to
program and quick to extend to other methods as well.

To exemplify the efficiency of the generated code, we con-
sider two limiting cases in fic-MRCC theory: first, large systems
with small active spaces, and second, systems with large active
spaces. We further note that the contractions given below are
asymptotically limiting, i.e., they need not be the most expen-
sive contractions for small systems. Large systems with small
active spaces, e.g., using triple-z basis sets and a CAS(2,2), are
dominated by the 4-external term, which also appears in single-

Scheme 4 Definition of the excitation classes for fic-MRCC theory (see also eqn (22)).

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15214 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

reference CC theory,

rabij ¼
X
cd

acjbdð Þtijcd : (24)

This term scales as O n2inactn
4
virt

� �
and thus dominates the

computational time for nvirt c ninact, nact. Therefore, it is crucial
to fully optimize this term, which is complicated by the fact that
the 4-external integrals must be stored on disk for their large
size. This is where the hand-coded ContractionEngine func-
tionality is employed: it minimizes I/O through reading large
batches of the amplitudes and integrals (up to a given memory
limit) and then applies a large-scale DGEMM operation to
have maximum computational efficiency, consequently per-
forming no worse than the best handwritten CC codes for this
contraction.34

The other extreme is given by systems with large active
spaces. In these cases, the runtime is dominated by contrac-
tions such as

Ytuvwpa
X

p1p2p3p4p5

gpwp3p2p1vtp1up2
Xp1p2p3p4p5a; (25)

which scales as O n10actnvirt
� �

and consequently dominates the
other contractions for nvirt 4 ninact, nact \ 6.

The tensor g5 is difficult for the CPU to manage because of
its complicated structure with ten dimensions as well as its size
(e.g., 8.59 GB for nact = 8), thus leading to frequent cache misses
if implemented naively with eleven nested loops. Such contrac-
tions are ideal candidates for the TTGT engine discussed above,
as BLAS libraries carefully optimize both algorithms and cache
usage. In this case, the generated code is reproduced in
Scheme 5.

The TTGT engine first reorders the five-body density DC5 to
optimally align and group the indices together, thus enabling a
single large-scale DGEMM instruction to digest the contraction.
As a result, explicit loops are only used to reorder the tensors,
while the actual contraction is done with implicit loops in the
DGEMM matrix–matrix multiplication. Compared to the same
contraction implemented with plain for-loops, the TTGT
scheme easily leads to a speedup by a factor 4100. All tensors
are kept in memory since the space requirements are not as
high as for the 4-external term and the number of active indices

is limited. The TTGT engine is also capable of accounting for
indices associated with I/O and will dynamically adapt to load
(sub-)tensors from disk in an optimal fashion and perform a
DGEMM over the remaining non-I/O indices, if required.

The improvements made to the code generator in ORCA-
AGE II now allow quite large systems to be computed with the
fic-MRCC implementation. It should be noted that our gener-
ated code does not yet take advantage of point group symmetry
and hence all calculations are performed under C1 symmetry.
The implementation of point group symmetry is a logical next
step that we are currently pursuing.

We will now present two calculations of tetradecene, C14H28,
and naphthalene, C10H8, for which the requirements are close
to the limits of computational resources for large systems with
small active spaces and systems with large active spaces,
respectively. Both systems were run in serial on an AMD EPYCt
75F3 processor and use the def2-SVP basis set.108 The tetra-
decene system uses a small CAS(2,2) active space. Thus, its 112
electrons are filled into 14 frozen core, 41 inactive, 2 active, and
279 virtual orbitals (336 in total). On average, a single iteration
takes 6.58 hours. The calculation converges smoothly in 12
iterations for a total runtime of 3.3 days, a timeframe that is
manageable for routine calculations. The naphthalene system,
on the other hand, uses a CAS(10,10), and distributes 68
electrons among 10 frozen core, 19 inactive, 10 active, and
141 virtual orbitals (180 in total). Each iteration requires
11.35 hours to complete, and an additional 17.46 hours are
spent computing the five-body density, which takes up
80.00 GB of memory. The total runtime for all 16 iterations is
8.3 days.

Finally, we present a series of calculations on linear polyene
chains (see Fig. 3) at the fic-MRCI and fic-MRCC levels of
theory, starting from ethene up until tetradecaheptaene, to
systematically try to find the limits of the current implementa-
tion. The active space consists of the conjugated p-system and
is thus increasing in size in tandem with the polyenes. We can
conclude that a CAS(14,14) calculation, which in this case
corresponds to a system size of 276 basis functions, is at the
very limit of what it achievable with our fic-MRCI. A single-
point calculation on tetradecaheptaene takes 3.5 days for 16
iterations. As can be seen, fic-MRCC is an order of magnitude

Scheme 5 Generated code for the time-limiting step of fic-MRCC theory involving a five-body density g5. This is an example of a BLAS call generated by
the TTGT engine, where g5 is first aligned to the other tensors to enable a BLAS call, and the final BLAS DGEMM operation directly operates on the tensors,
interpreting them as matrices. All indices starting with ‘‘p’’ refer to active indices in this context.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15215

more expensive than fic-MRCI, meaning a CAS(14,14) calculation
could not be completed. The largest possible calculation was
performed on dodecahexaene (238 basis functions) which took
24.5 days for 11 iterations.

From these examples, we see that increasing the size of the
active space severely limits the system size to remain compu-
tationally feasible. This is both due to the asymptotic scaling,
O n10actnvirt
� �

; as well as the difficulty of handling a large, high-
dimensional tensor like g5 for the CPU, as discussed above. To
this end, we are currently developing a version of fic-MRCC
theory that only requires the four-body density.

In summary, ORCA-AGE II has been proven to be a performant
toolchain that generates near-optimal code for the time-limiting
steps of fic-MRCC theory. The code optimization strategies illu-
strated here are, of course, also applied to the non-limiting
contractions in the code. However, despite the performant imple-
mentation, fic-MRCC theory remains a very time-intensive
method due to the large number of contractions it contains.

Parallel code generation with MPI

Quantum chemistry methods, such as CC theory, have a cost
that scales polynomially with respect to the number of basis

functions N, O Nxð Þ. Hence, systems with many basis functions
will take a long time to compute, unless further steps are taken.
One way to approach this is to reduce the scaling of the
methods through local approximation schemes, ideally ending
at x = 1.4 However, even then computational demands grow
with system size, to which the solution is to distribute the work
among multiple processors, ideally dividing the work and thus
the time perfectly among them. In this section, we will show
how parallelization can be achieved in a fully automated way
across any input theory that can be handled by ORCA-AGE II.

The most computationally demanding steps in electronic
structure methods are typically the tensor contractions, so the
parallelization effort should be focused on these. Considering
that the parallelized code needs to be generated for an arbitrary
number of contractions, a scheme is needed that would be
efficient regardless of the number of contractions and would be
able to handle the generality of the contractions. Hence, we
opted for parallelization on per-contraction-basis, where the
parallelization would occur only on the outermost loop.
By additionally forcing the I/O to be restricted to the outermost
loop (potentially by resorting matrix containers), it is ensured
that no two processes will access the same target matrix
simultaneously. A load-balancing scheme, in which one process
works on a single expensive contraction while another process
tackles multiple smaller contractions, is another route to sol-
ving this problem and is under active investigation.

An example of such parallelized code, based on eqn (26) can
be found below in Scheme 6. In order to enforce the I/O of the
target tensor to be restricted to the outermost loop, so-called
pair or compound indices are used, which map a tuple of
indices to a linear index and vice versa. In the case of
eqn (26), the indices i, j are mapped to the pair index ij. Doing
so also allows easy parallelization over restricted index lists,
such as i 4 j. With the use of these compound indices, the
contraction code for parallelized tensor contraction looks
exactly like for a serial program. Tensors are loaded from disk,
after which the contraction is evaluated (using BLAS) and the
result is then stored on disk. The only extension that is needed

Fig. 3 Polyene calculations at fic-MRCI and fic-MRCC level, using a def2-
SVP basis set, while increasing the number of carbons and simultaneously
the active space, meaning CAS(ncarbons, ncarbons).

Scheme 6 Semi-pseudo generated code of eqn (26) that has been parallelized over indices i, j using compound indices and ORCA parallel
infrastructure.

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15216 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

is to distribute the list of compound indices to the processes in
unique evenly sized batches, as defined by the pairIJAB_index_
start and pairIJAB_index_stop variables.

sabij
X
kc

kjjbcð Þccaki (26)

In order to check the performance of the parallelized code,
benchmarks using the RHF- and UHF-CCSD methods were
performed on a series of linear alkenes, from ethene to dode-
cene using the def2-TZVP basis set. Fig. 4 shows that the scaling
for 4 processes is close to the ideal value when larger systems
are treated. The situation is less ideal in the case of 8 processes,
with the speed-up stagnating around 7 and 6 times for RHF-
and UHF-CCSD, respectively. This is due to a small number of
contractions incurring I/O penalties from forcing the target
tensor to be accessed first.

A possible solution would be to gather the problematic
contraction patterns and incorporate those in the Contraction-
Engine as well to ensure maximum efficiency. Regardless,
the initial parallel implementation performs well, especially
considering that all of the code is generated entirely automa-
tically with no custom intervention.

Perspective: automated code
generation in quantum chemistry

In this section, we wish to address a few of the aspects which,
in our opinion, are of central importance for the future of
correlated wavefunction theory and where automatic code
generation offers unique opportunities. These considerations
are only partially of a genuine scientific nature, but we feel that
it is useful to spell them out in the present context as they have
far-reaching consequences for the way that implementation
projects might be handled in the immediate future.

The art and science of writing computer programs that
implement correlated wavefunction calculations began in the
late 1960s and early 1970s. Ingenious programs were written by
the best scientists in the field that took advantage of the state-
of-the-art hardware at the time.117–121 Unfortunately, these

programs became obsolete with the next or second next gen-
eration of hardware. Since writing a correlated wavefunction
code is an extremely technical and time-consuming under-
taking, the codes have never been rewritten and the science
and the effort that went into it are partially lost. Today, we are
facing the very same problem of legacy codes that are no longer
optimally adapted to modern computer facilities such as highly
parallel supercomputers. At the same time, in an academic
environment the novelty of writing another (e.g.) coupled cluster
code, is necessarily limited since it has been done so many times
in the past. Yet, it is still a difficult and time-consuming task.
Consequently, finding the financial and human resources to
tackle long and complicated re-implementation projects of known
quantum chemical theories will become more and more difficult.
It is precisely this aspect that we regard as one of the most
important missions of automatic code generation: to ensure that
theories can be implemented in an ever-shifting hardware land-
scape without investing years of programmer time. This is a
problem that automatic code generation, in principle, is able to
solve. However, in order to ensure that up-to-date code can indeed
be generated one must simultaneously tackle the problem of
‘‘deep-integration’’.

In order to explain the concept of ‘‘deep integration’’,
consider the commonly met situation, in which a code gene-
rator has been written by a very talented co-worker inside an
academic research group who has since moved on and may no
longer be available to ask questions, fix bugs or add new
features. Furthermore, if the code generator was written in an
unstable language, it may not even be executable anymore in its
original form. There may be some code inside a given program
package that was generated using these tools. If it was not
meticulously documented how exactly that code was generated
with which exact input using a given well-documented state of
the generation chain, it will be impossible to re-generate that
code. If the generated code is facing some limitations (for
example not being parallelized or not taking proper advantage
of molecular symmetry) the whole project will start from
scratch when the need arises to implement such features.

In order to avoid such unproductive cycles, it will therefore
be necessary to more tightly integrate the code generator itself
as well as the generated code with the host program. This does
not preclude the possibility that a given code generator can
generate code for different host programs. The ideal situation
that we envision, and to a large extent have realized in the
present incarnation of ORCA-AGE II, is that the developer only
submits their Ansatz in the form of an input file and expressed
in the language of second quantization into the source code
repository. Everything else from this point must proceed auto-
matically: generation and factorization of equations, genera-
tion of host specific high-level code and insertion of this code
in the host program. In this way, it can be ensured that all
generated code is of uniform quality and reflects the latest state
of development of the code generation chain. It will also ensure
that the origin of all generated code is unambiguous and
hence, well documented and reproducible. Obviously, for this
concept to work, the source code of the code generator itself

Fig. 4 Speed-up of CCSD Sigma equations by 4 and 8 processes as
calculated for linear alkenes, ethene – dodecene in a def2-TZVP basis. The
dashed lines indicate the ideal speedup. Calculations were performed on
an AMD EPYC 75F3 processor.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15217

must also be part of the source code repository. A master build
then proceeds by first generating the code generation chain
which subsequently triggers the generation of actual code as
described above. To this end, ORCA has a module ORCA_
AUTOCI, that essentially consists of a framework of solvers
and task organizers that trigger the various generated codes to
generate Sigma-vectors, energy expressions, gradients etc. No
generated code is inserted elsewhere in the program.

We believe, that following this strategy, the curse of legacy
code can be overcome and the generated code can be optimally
adapted to different hardware. In fact, if new hardware
emerges, the only thing that needs to change is the final step
of the generation that translates factorized equations into high-
level code. For a new hardware, a new module must be added to
the code generation chain that produces hardware specific
code. Alternatively, the new module could make use of emer-
ging libraries such as Kokkos122 or HPX.123 This becomes an
attractive possibility since no human time is involved in redo-
ing quantum chemical code. Such a strategy would also allow
for an optimal collaboration between quantum chemists and
computer scientists since the chemistry and computer sciences
tasks are cleanly separated from each other.

While we believe that solving the legacy code problem might
be the most important mission for automatic code generation,
there are other, more obvious advantages:

1. The generation of code implementing complex methods
can proceed in a matter of hours instead of years.

2. Theories like fic-MRCC that are far too complex for
humans, can be readily implemented in a reliable and efficient
manner. This become more and more important since the
readily implementable correlation methods tend to have been
implemented already many times.

3. Once the toolchain is properly debugged, the generated
code will be highly reliable and will produce correct results.
This will save humongous amounts of debugging time that any
human written code will have to go through.

Effectively, we envision a clearer partitioning of quantum
chemistry codes in the future into low-level, mid-level, and
high-level parts, to be explicated below. While the exact bound-
aries between the hierarchy of codes will be somewhat fluid, we
nonetheless believe that we identified the three main (future)
development areas of quantum chemistry codes.

Under ‘‘low-level,’’ we understand the foundational code of
any quantum chemical software package that provides basic
quantities such as molecular integrals and other general-
purpose libraries used throughout the codes, e.g., a library for
arbitrary-dimensional tensors. Integral libraries already exist
(for example, Libint,124 SHARK125 and libcint,126 to name but a
few) and have been extensively tuned for shortest possible
runtimes. Interestingly, specialized code generation has also
been employed for the integral libraries Libint124 and SHARK,77,127

as especially loop unrolling allows the compiler to generate the
most efficient code. Other low-level libraries include BLAS, which
allows peak efficiency for the ubiquitous matrix multiplications in
modern-day quantum chemistry codes. As a side note, general
BLAS-like libraries for arbitrary tensors that may become more

pervasive in the future would also fall in this category. Noteworthy
examples are TBLIS128 and GETT,43 among others.44,46

Under our classification, the mid-level code would mainly
comprise common algorithms that are implemented by hand,
such as general solvers and drivers. Given a flexible interface,
these common algorithms enable the (iterative) computation of
the desired molecular properties without needing to copy-and-
paste code, possibly with minor modifications depending on
the actual method. Doing so guarantees that these core algo-
rithms are free from errors since there is only the library that
needs to be tested; and not multiple, slightly different imple-
mentations. Also, any improvements also apply across all
implemented methods in a consistent fashion. In ORCA, we
are steadily moving in this direction, starting with the Davidson
and DIIS algorithms, and expect more changes by the time the
next major version releases.

The highest level is reserved for the actual implementation
of quantum chemical theories such as CCSD, CCSDT, fic-
MRCC, and gradients. This is ideally enabled through a high-
level interface that more closely resembles the mathematical
equations or Ansätze rather than computer code. This can be
achieved in many possible ways, each with its own benefits and
drawbacks. In our group, we decided to focus on code generation
since all contractions and tensors (with all their dimensions) are
already known at compile time. Thus, there is no need to interpret
the data on-the-fly, and the generated code can still be tailored to
different architectures and different framework backends such as
the ones mentioned in the introduction (CTF,44,45 libtensor,46

LITF,47 TCL,43,48 and TiledArray49,50). Other approaches may
include interpreters such as SIAL52,53,129,130 or direct usage of
the aforementioned libraries. One might even generate code
optimised for individual examples, given that the ideal factorisa-
tion depends on the size of the orbital subspaces. Eventually, only
the mathematical equations would be stored in the code reposi-
tory, which makes them easy to understand for new researchers as
well as easy to validate and modify.

Our firm belief in these underlying trends has led us to
significantly overhaul the entire architecture of ORCA, which
has started with the code generator and the SHARK integral
library77,127 for the fifth major version.127 Further work has
been done on the algorithms library, with more to come for the
next major release. In this article, we outlined the latest
developments in ORCA-AGE’s code generation capabilities,
which showcases what we think will be representative of
high-level interfaces in quantum chemical codes in the future.

Conclusions

In this article, we describe a newer version of ORCA-AGE,
ORCA-AGE II, which is a complete overhaul of the previously
introduced toolchain. Due to algorithmic improvements through-
out the code (especially in the time-limiting steps) and a shift in
programming language from PYTHON to C++, the toolchain is faster
by a factor of E150 as measured while generating fic-MRCC
theory. Its highly modular layout has also been refreshed,

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15218 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

enabling us to add new code engines such as the TTGT scheme
easily. It is also simpler to use than the old toolchain as external
dependencies were removed and because of an even tighter
integration with the main ORCA source code: all computational
modules can be regenerated with a simple command, which
automatically brings new features and better code to existing
modules as well.

The new toolchain has proven to be capable of generating
even the most complicated theories, as demonstrated for fic-
MRCC with its enormous number of terms generated through
the commutation rules-based equation generator. We also
showed that the toolchain is not tailored to specific problems,
but rather general enough to allow a gradient framework for
arbitrary theories to be developed with it. In both cases, the
generated code is highly performant despite the large number
of terms that must be computed. The AGE is even capable of
producing well-performing parallelised code. Higher-order
excitations, such as in CCSDT, can further be incorporated at
minimal effort on the researcher’s side.

In the end, developing automated code generators is bene-
ficial for researchers as it allows them to spend their resources
on their critical projects while at the same time transparently
accounting for an efficient, production-level implementation. We
believe that this is the direction in which ab initio quantum
chemistry is evolving and will hence continue to align our devel-
opment efforts on ORCA and ORCA-AGE with these trends.

Data availability

Original data from this work are provided as an open-access
data set hosted by the Open Research Data Repository of the
Max Planck Society at https://doi.org/10.17617/3.CWGUUL.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors greatly appreciate clarifying comments by Ondřej
Demel, Mihály Kállay, Andreas Köhn, Eric Neuscamman,
Masaaki Saitow, Toru Shiozaki, and Alexander Y. Sokolov on
the features of code generators in Table 1. The authors thank-
fully acknowledge funding by the Max Planck Society. M. H. L.
further thanks the Fonds der Chemischen Industrie as well as
the Studienstiftung des deutschen Volkes for support. Finally,
we gratefully acknowledge funding of this work by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
as part of the CRC 1639 NuMeriQS – project no. 511713970.
Open Access funding provided by the Max Planck Society.

References

1 R. E. Watson, Phys. Rev., 1960, 118, 1036–1045.
2 R. E. Watson, Phys. Rev., 1960, 119, 1934–1939.

3 M. R. Silva-Junior, S. P. A. Sauer, M. Schreiber and
W. Thiel, Mol. Phys., 2010, 108, 453–465.

4 C. Riplinger and F. Neese, J. Chem. Phys., 2013, 138, 034106.
5 C. Riplinger, P. Pinski, U. Becker, E. F. Valeev and F. Neese,

J. Chem. Phys., 2016, 144, 024109.
6 R. R. Schaller, IEEE Spectrosc., 1997, 34, 52–59.
7 W. Meyer, in Methods of Electronic Structure Theory, ed.

H. F. Schaefer III, Springer Science + Business Media, New
York, 1977, vol. 3, pp. 413–446.

8 P. E. M. Siegbahn, Int. J. Quantum Chem., 1980, 18,
1229–1242.

9 T. Yanai, Y. Kurashige, M. Saitow, J. Chalupský, R. Lindh
and P.-Å. Malmqvist, Mol. Phys., 2017, 115, 2077–2085.

10 S. Hirata, Theor. Chem. Acc., 2006, 116, 2–17.
11 C. L. Janssen and H. F. Schaefer III, Theor. Chim. Acta,

1991, 79, 1–42.
12 G. C. Wick, Phys. Rev., 1950, 80, 268–272.
13 I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry

and Physics: MBPT and Coupled-Cluster Theory, Cambridge
University Press, Cambridge, 2009.

14 S. Hirata, J. Phys. Chem. A, 2003, 107, 9887–9897.
15 A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata,

V. Choppella, D. Cociorva, X. Gao, R. Harrison,
S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q. Lu,
M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan and
A. Sibiryakov, Mol. Phys., 2006, 104, 211–228.

16 T. Shiozaki, M. Kamiya, S. Hirata and E. F. Valeev, Phys.
Chem. Chem. Phys., 2008, 10, 3358.

17 M. K. MacLeod and T. Shiozaki, J. Chem. Phys., 2015, 142,
051103.

18 K. R. Shamasundar, G. Knizia and H.-J. Werner, J. Chem.
Phys., 2011, 135, 054101.

19 E. Neuscamman, T. Yanai and G. K.-L. Chan, J. Chem.
Phys., 2009, 130, 124102.

20 E. Neuscamman, T. Yanai and G. K.-L. Chan, J. Chem.
Phys., 2009, 130, 169901.

21 M. Saitow, Y. Kurashige and T. Yanai, J. Chem. Phys., 2013,
139, 044118.

22 M. Saitow, Y. Kurashige and T. Yanai, J. Chem. Theory
Comput., 2015, 11, 5120–5131.

23 M. Saitow and T. Yanai, J. Chem. Phys., 2020, 152, 114111.
24 M. Nooijen and V. Lotrich, J. Mol. Struct.: THEOCHEM,

2001, 547, 253–267.
25 L. Kong, K. R. Shamasundar, O. Demel and M. Nooijen,

J. Chem. Phys., 2009, 130, 114101.
26 L. Kong, PhD Thesis, University of Waterloo, 2009.
27 A. Köhn, G. W. Richings and D. P. Tew, J. Chem. Phys.,

2008, 129, 201103.
28 A. Köhn, J. Chem. Phys., 2009, 130, 104104.
29 J. Paldus and H. C. Wong, Comput. Phys. Commun., 1973, 6,

1–7.
30 H. C. Wong and J. Paldus, Comput. Phys. Commun., 1973, 6,

9–16.
31 Z. Csépes and J. Pipek, J. Comput. Phys., 1988, 77, 1–17.
32 M. Kállay and P. R. Surján, J. Chem. Phys., 2001, 115,

2945–2954.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

https://doi.org/10.17617/3.CWGUUL
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 | 15219

33 T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-
Structure Theory, John Wiley & Sons, Ltd, Chichester, 2000.

34 M. Krupička, K. Sivalingam, L. Huntington, A. A. Auer and
F. Neese, J. Comput. Chem., 2017, 38, 1853–1868.

35 A. Hartono, A. Sibiryakov, M. Nooijen, G. Baumgartner, D. E.
Bernholdt, S. Hirata, C.-C. Lam, R. M. Pitzer, J. Ramanujam
and P. Sadayappan, in Computational Science – ICCS 2005,
ed. V. S. Sunderam, G. D. van Albada, P. M. A. Sloot and
J. J. Dongarra, Springer Berlin Heidelberg, Berlin, Heidelberg,
2005, vol. 3514, pp. 155–164.

36 P.-W. Lai, H. Zhang, S. Rajbhandari, E. Valeev, K. Kowalski
and P. Sadayappan, Proc. Comput. Sci., 2012, 9, 412–421.

37 A. D. Bochevarov and C. D. Sherrill, J. Chem. Phys., 2004,
121, 3374–3383.

38 A. Hartono, Q. Lu, X. Gao, S. Krishnamoorthy, M. Nooijen,
G. Baumgartner, D. E. Bernholdt, V. Choppella, R. M.
Pitzer, J. Ramanujam, A. Rountev and P. Sadayappan, in
Computational Science – ICCS 2006, ed. V. N. Alexandrov,
G. D. van Albada, P. M. A. Sloot and J. Dongarra, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006, vol. 3991,
pp. 267–275.

39 A. Engels-Putzka and M. Hanrath, J. Chem. Phys., 2011,
134, 124106.

40 J. F. Stanton, J. Gauss, J. D. Watts and R. J. Bartlett, J. Chem.
Phys., 1991, 94, 4334–4345.

41 C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh,
ACM Trans. Math. Software, 1979, 5, 308–323.

42 M. Hanrath and A. Engels-Putzka, J. Chem. Phys., 2010,
133, 064108.

43 P. Springer and P. Bientinesi, ACM Trans. Math. Software,
2018, 44, 1–29.

44 E. Solomonik, D. Matthews, J. Hammond and J. Demmel,
2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, 2013.

45 E. Solomonik, D. Matthews, J. R. Hammond, J. F. Stanton
and J. Demmel, J. Parallel Distrib. Comput., 2014, 74,
3176–3190.

46 E. Epifanovsky, M. Wormit, T. Kuś, A. Landau, D. Zuev,
K. Khistyaev, P. Manohar, I. Kaliman, A. Dreuw and
A. I. Krylov, J. Comput. Chem., 2013, 34, 2293–2309.

47 D. Kats and F. R. Manby, J. Chem. Phys., 2013, 138, 144101.
48 P. Springer, Tensor Contraction Library (TCL), https://

github.com/springer13/tcl, (accessed September 20, 2021).
49 J. A. Calvin and E. F. Valeev. TiledArray: A general-purpose

scalable block-sparse tensor framework, https://github.
com/valeevgroup/tiledarray, (accessed June, 30, 2021).

50 J. A. Calvin, C. A. Lewis and E. F. Valeev, Proceedings of the
5th Workshop on Irregular Applications: Architectures and
Algorithms, 2015.

51 N. Jindal, PhD Thesis, University of Florida, 2015.
52 E. Deumens, V. F. Lotrich, A. Perera, M. J. Ponton, B. A.

Sanders and R. J. Bartlett, Wiley Interdiscip. Rev.: Comput.
Mol. Sci., 2011, 1, 895–901.

53 E. Deumens, V. F. Lotrich, A. S. Perera, R. J. Bartlett,
N. Jindal and B. A. Sanders, Annual Reports in Computa-
tional Chemistry, Elsevier, 2011, vol. 7, pp. 179–191.

54 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and
M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012,
2, 242–253.

55 J. M. Herbert and W. C. Ermler, Comput. Chem., 1998, 22,
169–184.

56 M. Kállay and P. R. Surján, J. Chem. Phys., 2000, 113,
1359–1365.

57 K. Kowalski, J. R. Hammond, W. A. de Jong, P.-D. Fan,
M. Valiev, D. Wang and N. Govind, in Computational
Methods for Large Systems, ed. J. R. Reimers, John Wiley &
Sons, Inc., Hoboken, NJ, USA, 2011, pp. 167–200.

58 H. J. J. van Dam, W. A. de Jong, E. Bylaska, N. Govind,
K. Kowalski, T. P. Straatsma and M. Valiev, Wiley Inter-
discip. Rev.: Comput. Mol. Sci., 2011, 1, 888–894.

59 S. Hirata, J. Chem. Phys., 2004, 121, 51–59.
60 S. Hirata, P.-D. Fan, A. A. Auer, M. Nooijen and P. Piecuch,

J. Chem. Phys., 2004, 121, 12197–12207.
61 T. Shiozaki, M. Kamiya, S. Hirata and E. F. Valeev, J. Chem.

Phys., 2008, 129, 071101.
62 B. Vlaisavljevich and T. Shiozaki, J. Chem. Theory Comput.,

2016, 12, 3781–3787.
63 K. Chatterjee and A. Y. Sokolov, J. Chem. Theory Comput.,

2019, 15, 5908–5924.
64 I. M. Mazin and A. Y. Sokolov, J. Chem. Theory Comput.,

2021, 17, 6152–6165.
65 M. Hanauer and A. Köhn, J. Chem. Phys., 2011, 134, 204111.
66 D. Datta, L. Kong and M. Nooijen, J. Chem. Phys., 2011,

134, 214116.
67 D. Datta and M. Nooijen, J. Chem. Phys., 2012, 137, 204107.
68 O. Demel, D. Datta and M. Nooijen, J. Chem. Phys., 2013,

138, 134108.
69 M. Nooijen, O. Demel, D. Datta, L. Kong, K. R.

Shamasundar, V. Lotrich, L. M. Huntington and F. Neese,
J. Chem. Phys., 2014, 140, 081102.

70 J. A. Black, A. Waigum, R. G. Adam, K. R. Shamasundar
and A. Köhn, J. Chem. Phys., 2023, 158, 134801.

71 W. Kutzelnigg and D. Mukherjee, J. Chem. Phys., 1997, 107,
432–449.

72 F. A. Evangelista, J. Chem. Phys., 2022, 157, 064111.
73 K. Sivalingam, M. Krupička, A. A. Auer and F. Neese,

J. Chem. Phys., 2016, 145, 054104.
74 L. M. J. Huntington, M. Krupička, F. Neese and R. Izsák,

J. Chem. Phys., 2017, 147, 174104.
75 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, 2, 73–78.
76 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2017,

8, e1327.
77 F. Neese, F. Wennmohs, U. Becker and C. Riplinger,

J. Chem. Phys., 2020, 152, 224108.
78 T. Shiozaki, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2018,

8(1), e1331.
79 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-

Gordon, Chem. Phys. Lett., 1989, 157, 479–483.
80 Y. J. Bomble, J. F. Stanton, M. Kállay and J. Gauss, J. Chem.

Phys., 2005, 123, 054101.
81 S. A. Kucharski and R. J. Bartlett, J. Chem. Phys., 1992, 97,

4282–4288.

PCCP Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

https://github.com/springer13/tcl
https://github.com/springer13/tcl
https://github.com/valeevgroup/tiledarray
https://github.com/valeevgroup/tiledarray
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

15220 | Phys. Chem. Chem. Phys., 2024, 26, 15205–15220 This journal is © the Owner Societies 2024

82 J. Gauss and J. F. Stanton, J. Chem. Phys., 2002, 116,
1773–1782.

83 Y. S. Lee and R. J. Bartlett, J. Chem. Phys., 1984, 80,
4371–4377.

84 Y. S. Lee, S. A. Kucharski and R. J. Bartlett, J. Chem. Phys.,
1984, 81, 5906–5912.

85 Y. S. Lee, S. A. Kucharski and R. J. Bartlett, J. Chem. Phys.,
1985, 82, 5761.

86 M. Urban, J. Noga, S. J. Cole and R. J. Bartlett, J. Chem.
Phys., 1985, 83, 4041–4046.

87 J. Noga, R. J. Bartlett and M. Urban, Chem. Phys. Lett., 1987,
134, 126–132.

88 J. Gauss and J. F. Stanton, Phys. Chem. Chem. Phys., 2000, 2,
2047–2060.

89 Y. He, Z. He and D. Cremer, Theor. Chem. Acc., 2001, 105,
182–196.

90 P. Pulay, S. Saebo and W. Meyer, J. Chem. Phys., 1984, 81,
1901–1905.

91 D. A. Matthews, L. Cheng, M. E. Harding, F. Lipparini,
S. Stopkowicz, T. C. Jagau, P. G. Szalay, J. Gauss and
J. F. Stanton, J. Chem. Phys., 2020, 152, 214108.

92 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007–1023.
93 B. G. Adams and J. Paldus, Phys. Rev. A: At., Mol., Opt. Phys.,

1979, 20, 1–17.
94 N. Herrmann and M. Hanrath, J. Chem. Phys., 2020, 153, 164114.
95 D. A. Matthews, J. Gauss and J. F. Stanton, J. Chem. Theory

Comput., 2013, 9, 2567–2572.
96 D. A. Matthews and J. F. Stanton, J. Chem. Phys., 2015,

142, 064108.
97 F. Jensen, Introduction to Computational Chemistry, John

Wiley & Sons, 2017.
98 P. Jørgensen and J. Simons, J. Chem. Phys., 1983, 79,

334–357.
99 P. Pulay, in Modern Electronic Structure Theory, ed. D. R.

Yarkony, World Scientific, Singapore, 1995, vol. 2, p. 1191.
100 E. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys.,

1989, 90, 1752–1766.
101 J. Gauss, W. J. Lauderdale, J. F. Stanton, J. D. Watts and

R. J. Bartlett, Chem. Phys. Lett., 1991, 182, 207–215.
102 K. Hald, A. Halkier, P. Jørgensen, S. Coriani, C. Hättig and

T. Helgaker, J. Chem. Phys., 2003, 118, 2985–2998.
103 A. C. Scheiner, G. E. Scuseria, J. E. Rice, T. J. Lee and

H. F. Schaefer III, J. Chem. Phys., 1987, 87, 5361–5373.
104 N. C. Handy and H. F. Schaefer III, J. Chem. Phys., 1984, 81,

5031–5033.
105 K. Kristensen, P. Jørgensen, A. J. Thorvaldsen and

T. Helgaker, J. Chem. Phys., 2008, 129, 214103.
106 T. Helgaker and P. Jørgensen, in Methods in Computational

Molecular Physics, ed. S. Wilson and G. H. F. Diercksen,
Plenum, New York, 1992.

107 J. Gauss, J. F. Stanton and R. J. Bartlett, J. Chem. Phys.,
1991, 95, 2623–2638.

108 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005,
7, 3297–3305.

109 D. I. Lyakh, M. Musiał, V. F. Lotrich and R. J. Bartlett,
Chem. Rev., 2012, 112, 182–243.

110 I. Lindgren, Int. J. Quantum Chem., 1978, 14, 33–58.
111 B. Jeziorski and H. J. Monkhorst, Phys. Rev. A: At., Mol.,

Opt. Phys., 1981, 24, 1668–1681.
112 W. D. Laidig and R. J. Bartlett, Chem. Phys. Lett., 1984, 104,

424–430.
113 A. Banerjee and J. Simons, Int. J. Quantum Chem., 1981, 19,

207–216.
114 F. A. Evangelista and J. Gauss, J. Chem. Phys., 2011, 134,

114102.
115 M. Hanauer and A. Köhn, J. Chem. Phys., 2012, 137, 131103.
116 J. A. Black and A. Köhn, J. Chem. Phys., 2019, 150, 194107.
117 R. Ahlrichs, H. J. Böhm, C. Ehrhardt, P. Scharf, H. Schiffer,

H. Lischka and M. Schindler, J. Comput. Chem., 1984, 6,
200–208.

118 H. Lischka, R. Shepard, F. B. Brown and I. Shavitt, Int.
J. Quantum Chem., Quantum Chem. Symp., 1981, 15, 91–100.

119 J. Paldus, J. Čı́žek and I. Shavitt, Phys. Rev. A: At., Mol., Opt.
Phys., 1972, 5, 50–67.

120 W. Meyer, J. Chem. Phys., 1973, 58, 1017–1035.
121 R. J. Bartlett and G. D. Purvis, Int. J. Quantum Chem., 1978,

14, 561–581.
122 C. R. Trott, D. Lebrun-Grandie, D. Arndt, J. Ciesko, V.

Dang, N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman,
D. Ibanez, N. Liber, J. Madsen, J. Miles, D. Poliakoff, A. Powell,
S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin
and J. Wilke, IEEE Trans. Parallel Distrib. Syst., 2022, 33,
805–817.

123 H. Kaiser, P. Diehl, A. Lemoine, B. Lelbach, P. Amini,
A. Berge, J. Biddiscombe, S. Brandt, N. Gupta, T. Heller,
K. Huck, Z. Khatami, A. Kheirkhahan, A. Reverdell,
S. Shirzad, M. Simberg, B. Wagle, W. Wei and T. Zhang,
J. Open Source Software, 2020, 5, 2352.

124 E. F. Valeev and J. T. Fermann. Libint: A high-performance
library for computing Gaussian integrals in quantum
mechanics, https://github.com/evaleev/libint, (accessed
September 16, 2021).

125 F. Neese, J. Comput. Chem., 2023, 44, 381–396.
126 Q. Sun, J. Comput. Chem., 2015, 36, 1664–1671.
127 F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2022,

12, e1606.
128 D. A. Matthews, arXiv, 2017, preprint, arXiv:1607.00291,

DOI: 10.48550/arxiv.1607.00291.
129 V. Lotrich, N. Jindal, E. Deumens, R. J. Bartlett and

B. A. Sanders, Final Report: The Super Instruction Archi-
tecture, 2013.

130 V. F. Lotrich, J. M. Ponton, A. S. Perera, E. Deumens,
R. J. Bartlett and B. A. Sanders, Mol. Phys., 2010, 108,
3323–3330.

Paper PCCP

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 0

7
 2

02
4.

 D
ow

nl
oa

de
d

on
 1

5/
02

/2
02

6
14

:5
2:

55
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online

https://github.com/evaleev/libint
https://doi.org/10.48550/arxiv.1607.00291
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00444b

