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HFM-Tracker: a cell tracking algorithm based on
hybrid feature matching†
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Cell migration is known to be a fundamental biological process, playing an essential role in development,

homeostasis, and diseases. This paper introduces a cell tracking algorithm named HFM-Tracker (Hybrid

Feature Matching Tracker) that automatically identifies cell migration behaviours in consecutive images. It

combines Contour Attention (CA) and Adaptive Confusion Matrix (ACM) modules to accurately capture cell

contours in each image and track the dynamic behaviors of migrating cells in the field of view. Cells are firstly

located and identified via the CA module-based cell detection network, and then associated and tracked via a

cell tracking algorithm employing a hybrid feature-matching strategy. This proposed HFM-Tracker exhibits

superiorities in cell detection and tracking, achieving 75% in MOTA (Multiple Object Tracking Accuracy) and

65% in IDF1 (ID F1 score). It provides quantitative analysis of the cell morphology and migration features,

which could further help in understanding the complicated and diverse cell migration processes.

1. Introduction

Cell behaviour, including both morphological and migratory
changes, serves as an instantaneous reflection of intracellular
tension dynamics. Understanding cell behaviour is crucial for
comprehending fundamental biological processes such as
tissue formation, immune response, and wound healing.1

Abnormal cell migration can result in unexpected disruptions
to biological functions, further associated with diseases such
as malformations,2 autoimmune diseases,3 and cancer meta-
stasis.4 For example, the directional migration of tumour cells
during metastasis is one of the leading causes of cancer-
related deaths.5,6 During metastasis, tumour cells detach from
the primary tumour, migrate and transport through vessels
and survive anoikis, and ultimately form the secondary sites,
resulting in severe organ failure. Both cell movements and
alterations in cell shapes are greatly involved in these complex

cellular processes.7,8 Thus it is crucial to track and observe the
migratory movement as well as the diverse cell morphology
changes of cancer cells, which can help identify and study
abnormal cell behaviours and provide insights into cancer
development. As cell migration is key to the metastatic
process, continuous tracking of the collective cell migrations
over time is of great significance,9–12 but remains a challenge
due to the diverse and dynamic shapes of individual cells.
Considering the frequent deformations of single cells, such as
elongation, contraction, and division, accurate identification
of cell contours is particularly required. The accompanying
rapid migration of cells across large fields of view further com-
plicates the cell tracking, which involves the processing of
large volumes of time-series image data.

In recent years, with the rapid development of computer
science and bioimage informatics, cell tracking methods have
received extensive attention and have made great progress.
Historically, traditional cell segmentation methods were often
designed for specific applications, such as the TWANG algor-
ithm,13 which was tailored for segmenting circular objects.
These conventional approaches14 typically relied on preproces-
sing filters, e.g., Gaussian or median filters as well as complex
segmentation operations, such as region-adaptive thresholding
followed by watershed transformations. Achieving reasonable
segmentation results required fine-tuning these methods for
different cell types and imaging conditions. Several automated
cell tracking methods have been developed,15–18 but some
require fluorescent labeling.19–21 This may affect the intrinsic
behaviour of living cells,20 posing challenges for long-term
living cell tracking. With the advancement of deep learning,
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its application in the field of cell tracking has become increas-
ingly prevalent.22–25 For instance, He et al.22 combined motion
models with a classification neural network for cell tracking,
effectively leveraging the advantages of motion information
and cell feature classification. Hayashida et al.23,24 achieved
joint detection and tracking of cells by predicting cell posi-
tions and motion mapping through a neural network without
providing cell segmentation contours. Furthermore, Payer
et al.25 employed a single recurrent hourglass network to sim-
ultaneously perform cell segmentation and tracking, simplify-
ing the processing pipeline. Overall, cell tracking methods
based on deep learning technology are mainly categorized into
two types: detection-based tracking26–29 and model evolution-
based tracking.14,30 The former is generally performed through
cell segmentation and association, focusing respectively on the
spatial and temporal information of cell tracking. The latter
method tracks cells by searching for similarities31 in adjacent
images and is suitable for objects whose positions and features
change over time. Both methods require the target objects to
have high-contrast edges and minimal deformation. In compari-
son, detection-based tracking exhibits significant advantages in
processing speed and simplification of computational workflow,
particularly in the rapid and effective handling of cell segmenta-
tion and association. This method initially identifies cells from
the background using features such as texture or gradient.
Subsequently, by optimizing a probabilistic objective function,
these detected cells are matched and connected in a continuous
image sequence to form the trajectory of cell movement. The
essence of this detection-based tracking lies in accurately seg-
menting individual cells and maintaining correct identification
and association of the same cells in subsequent frames, enabling
the acquisition of time-series trajectories for a large number of
cells.

Herein, we develop a cell tracking algorithm named
HFM-Tracker to accurately capture the dynamic cell behaviour
from image sequences. The algorithm applies a cell detection
network with a Contour Attention (CA) module to localized
moving cells. Subsequently, a tracking algorithm based on an
Adaptive Confusion Matrix (ACM) module is utilized to associ-
ate and track the detected cells. This proposed HFM-Tracker
shows superiority in capturing diverse cell morphological and
migratory behaviours, providing essential characteristics such
as cellular morphological parameters and migration trajec-
tories. Furthermore, we apply this algorithm for real-time
tracking of label-free cancer cells in bright-field microscopic
images, where cell viability can be easily distinguished. This
method proves valuable for better understanding the intrinsic
migratory properties of living cells and provides insights into
biological processes associated with cell migration.

2. Experimental section
2.1 Cells and cell culture

Briefly, the MCF-7 cells (human breast cancer cell line, a kind
gift from Yuncong Chen’s laboratory, Nanjing University) were

cultured in a 24-well plate using RPMI 1640 medium sup-
plemented with 10% fetal bovine serum and 1% antibiotics
(penicillin and streptomycin). Cells were maintained at 37 °C
under a 5% CO2 atmosphere within an incubator. Time-lapse
cell images were captured using incubator-enclosed
microscopy (zenCELL owl, Germany) at 10 minute intervals.
For the cell tracking experiments, MCF-7 cells were cultured
with or without 0.5 mM hydrogen peroxide in the culture
medium.

2.2 Cell image acquisition

The dataset employed in this study consists of a series of cell
images obtained through real-time cell culture under different
conditions. Each set of images contains 144 time-lapse images
(2588 × 1942 pixels), captured at 10-minute intervals, with a
total recording duration of 24 hours. 70 images were selected
from this dataset for manual cell detection and tracking using
LabelMe software (version 5.0.1), with annotation made for all
the cells present in these images. All experiments were con-
ducted on an Intel Core i5-13500HX with 32GB RAM.

2.3 HFM-Tracker procedures

HFM-Tracker integrates a CA module-based cell detection
algorithm and an ACM module-based cell tracking algorithm.
It enables precise recognition and localization of individual
cells, tracking the accurate cell morphology and their move-
ment trajectories. Briefly, the main procedure of this algorithm
consists of two steps: (1) cell recognition and detection and (2)
cell association and tracking.

2.3.1 Cell recognition and detection. As shown in Fig. 1a,
the cell detection network first provides the preliminary
octagonal contour frame of the cells through the initial
contour building model. And the offset of the cell contour
is predicted by the contour offset regression model, yielding
accurate shape and position information of the cells.
Specifically, the initial contour building model acquires
basic cellular information of each cell through an encoder–
decoder network. This information includes the cell
heatmap, target bounding box size, and central offset,
which are further used to build an initial contour frame for
each cell. The contour offset regression model extracts the
cellular contour features through multi-layer circular convo-
lution, and subsequently predicts the contour offset via a
contour offset prediction module that incorporates a CA
module (Fig. S1†). The incorporation of the CA module
enhances the capabilities of the cell detection algorithm,
allowing it not only to effectively recognize and extract cell
morphological features but also precisely focus on and
capture the boundaries and contour information of each
cell. This facilitates the identification of cells with different
morphologies and enables the evaluation of cellular mor-
phological change. Finally, the level set method is employed
to post-process the recognition results, optimizing cell reco-
gnition and detection and thereby enhancing accuracy and
robustness of the cell detection algorithm.
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Fig. 1 Schematic diagram of the algorithmic flow of HFM-Tracker. (a) Schematic illustration of the cell detection algorithm based on the CA
module. An encoder–decoder network layer is first employed to obtain essential information on each cell, including the heat map, target bounding
box size, and centre offset. An octagonal contour is constructed based on the detected rectangular box, which enables the extraction of contour
features of each cell. A contour offset regression model incorporated with the CA module is subsequently used to predict the subtle cell contour,
which is further fine-tuned by a level set method. An accurate contour of each cell is thus depicted in the bright field images. (b) Schematic illus-
tration of the ACM module-based cell tracking algorithm. The algorithm initiates cell motion trajectories from the first frame of the image. It associ-
ates the tracks of each cell by using an ACM module that incorporates the cellular morphological and hybrid motion features. The Kalman filter is
then used to predict the subsequent states of each tracked cell based on its former states and observed motion. The trajectories of each cell are
differentiated based on the similarity of their features. Those trajectories that are not associated with any current detection are marked as
unmatched trajectories, and similarly, detections that are not linked to any existing trajectories are labelled as unmatched detections. Trajectories
that are successfully paired with corresponding detections are updated and continue as matched trajectories. The algorithm removes unmatched
trajectories that do not receive updates within a threshold period, thus avoiding the accumulation of incorrect paths. It classifies detection boxes
with low confidence scores to determine if they represent cellular targets and creates new trajectories for unmatched detections classified as actual
objects. The algorithm refines cell tracking results by updating the Kalman filter, incorporating predicted outcomes with actual results.
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2.3.2 Cell association and tracking. The key to cell tracking
is the accurate capture of the moving trajectories of cells in
sequential images, along with their time-series morphologies.
Thus, tracking cell motions in consecutive images becomes a
crucial step after successful recognition and detection. As
shown in Fig. 1b, cell trajectories are initialized with the cells
identified in the first image. The tracking algorithm includes a
cell data association module that matches similar cells in con-
secutive images to ensure trajectory consistency. It utilizes a
Kalman filter to predict and correct the motion path of cells to
achieve accurate trajectory tracking. The morphological fea-
tures (MF) and hybrid motion features (HMF) of the cells are
integrated into the confusion matrix during the period of tra-
jectory matching and updating. This integration is achieved
without the need for manual weighting of the motion- and
morphology-based cost matrices, allowing for the full exploita-
tion of both features. The specific formulas are shown as
follows:

costmotion ¼ aLGIoUij þ bLdistij þ cLareaij ð1Þ

costGIoU;mor ¼ ωcostGIoU þ ð1� ωÞcostmor ð2Þ

costada ¼ minðcostmotion; costGIoU;morÞ ð3Þ
The ACM employs a two-stage matching strategy. In the first

phase, Hungarian matching is performed separately using a
hybrid motion cost matrix costmotion and a morphological cost
matrix constrained by GIoU, costGIoU,mor, resulting in two sets
of matches, MA and MB. Within costGIoU,mor, GIoU serves as a
constraint to eliminate cells that appear similar but are too
distant from each other. Subsequently, matching pairs
common to both MA and MB are extracted and consolidated
into a match set M1. In the second phase, for unmatched
detection boxes and tracking trajectories not included in the
M1 set, the cost matrix costada is recalculated in an adaptively
selected manner. Then, the Hungarian algorithm is applied
based on costada to obtain the match set M2. Finally, the
match sets M1 and M2 are combined to produce the final
matching result, denoted as M, for output. This adaptive strat-
egy allows the tracking algorithm to achieve highly accurate
cell trajectories even in complex situations such as cell overlap
or crossing.

2.4 Model validation

In this study, a total of 70 images are selected from the dataset
and divided into training, validation and test sets in a ratio of
8 : 1 : 1 to facilitate accurate evaluation of the model.
Specifically, the training set includes 56 images containing
5574 cells, the validation set includes 7 images with 694 cells,
while the test set includes 7 images with a total of 680 cells.
MCF-7 cells were cultured under normal conditions with time-
lapse images collected, exhibiting natural cell elongation or
division (Fig. S2†). To validate the performance of cell detec-
tion, AP (Average Precision)32 is employed to evaluate the
detection accuracy, which is derived by plotting the precision–
recall curve across various confidence threshold values and

calculating the area under this curve. The calculation for AP is
as follows:

Pn ¼ TP
TPþ FP

ð4Þ

Rn ¼ TP
TPþ FN

ð5Þ

AP ¼ P

n
Rn � Rn�1ð ÞPn ð6Þ

where TP (True Positives) represents the number of pixels
where both the predicted area and actual area are identified as
cell regions; FP (False Positives) refers to the number of pixels
where the predicted area is identified as a cell region, but the
actual area is a non-cell region; and FN (False Negatives)
denotes the number of pixels where the predicted area is
identified as a non-cell region, but the actual area is a cell
region. Pn and Rn correspond to the precision and recall
respectively at the nth confidence threshold level.

MOTA (Multiple Object Tracking Accuracy) and IDF1 (ID F1
score)33 are utilized to evaluate the accuracy of cell tracking.
MOTA calculates tracking accuracy by comprehensively consid-
ering the number of errors, cells missed during tracking, and
cell ID switches. The calculation is as follows:

MOTA ¼ 1�
P

t

FPtþFNtþIDStð Þ
P

t

GT
ð7Þ

where FPt represents the number of cells that are tracked incor-
rectly at time t; FNt is the number of missed cells during track-
ing; IDSt denotes the number of cells that switch ID; and GTt

is the actual total number of cells at time t.
IDF1 is the F1 score based on matching cell tracking IDs. It

is calculated as the ratio of correctly matched cell IDs to the
sum of all actual detected cells. The calculations for ID
Precision (IDP), ID Recall (IDR), and IDF1 are as follows:

IDP ¼ IDTP
IDTPþ IDFP

ð8Þ

IDR ¼ IDTP
IDTPþ IDFN

ð9Þ

IDF1 ¼ 2
1

IDP
þ 1
IDR

¼ 2IDTP
2IDTPþ IDFPþ IDFN ð10Þ

where IDTP represents the number of correctly tracked cell
IDs; IDFP is the number of detected cell IDs that are incor-
rectly assigned; and IDFN refers to the number of detected cell
IDs that are missed or not assigned.

3. Results and discussion

To thoroughly evaluate the performance of HFM-Tracker, we
assessed its detection and tracking capabilities on an indepen-
dent test dataset that was not previously used for either model
training or validation. Cells were categorized into three classes
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according to the number of pixels they occupied in the image:
small cells, medium cells and large cells referred to the cells
occupying fewer than 322, 322 to 962, and more than 962

pixels, respectively. As shown in Table 1, HFM-Tracker per-
formed well in detecting and tracking cells of different sizes.
The highest AP value of 48.2% was obtained for large cells,
indicating that the algorithm is particularly adept at recogniz-
ing features of larger cells, thereby ensuring tracking accuracy.
Large cells also exhibited the highest IDF1 and IDP values, at
65.2% and 73.3%, respectively. The highest MOTA value of
75.7% was achieved for medium cells. These data indicate that
large cells perform better regarding average accuracy and con-
sistency in cell ID maintenance. In contrast, medium cells
show higher precision in multi-object tracking, whereas small
cells exhibit slightly lower performance across the proposed
metrics. The dynamic cellular processes including growth and
division mainly involve cells that are large and medium in
size, only showing small sizes for short periods. Therefore,

this HFM-Tracker can still be used for time-resolved cell track-
ing, providing clear morphological characteristics and
migration trajectories.

Further ablation experiments were performed to validate
the effectiveness of each module in the HFM-Tracker algor-
ithm. Table 2 presents the performance metrics under
different model configurations, showing that the introduction
of the CA module and ACM module improved various perform-
ance indicators. The indicators of AP, MOTA, and IDF1 were
respectively improved by 0.7%, 0.7%, and 0.8% compared to
the Backbone model. This indicates that the introduction of
the ACM model to the cell tracking algorithm contributed less
to the cell detection part. Nevertheless, the CA module applied
in the cell detection network not only improves the recognition
and detection of polymorphic cells, but also enhances the cell
tracking performance.

The time-series migration trajectories were plotted to visual-
ize the moving tumour cells and better show the migration
characteristics. Trajectories of a set of MCF-7 cells over 6 hours
are depicted in Fig. 2a, showing the various migration beha-
viours in plate culture. One image was selected every hour to
capture these dynamics. Most of the cells in the field of view
were successfully detected and tracked with this HFM-Tracker.
We marked the contour shape of each cell and its corres-
ponding motion trajectory with the same colour and assigned
unique cell IDs such as “cell-1”, “cell-2”, etc. (Fig. 2b). Besides,
the trajectory and morphological changes of a representative
“cell-42” over a period of 6 hours were highlighted for better
visualization (Fig. 2c). This method enables the identification
and tracking of each cell from the ensemble, providing
detailed cellular characterization with individual
heterogeneity.

HFM-Tracker further provides morphological characteristics
of the motile cells via the CA module-based detection algor-
ithm, such as perimeter, area, roundness and aspect ratio.
Roundness is specifically used to describe how closely the

Table 1 Comparative evaluation metrics for detection and tracking
performance of different types of cells

Cell category AP MOTA IDP IDR IDF1

Small 45.2% 74.9% 71.7% 57.7% 64.0%
Medium 47.3% 75.7% 72.3% 60.2% 65.7%
Large 48.2% 74.5% 73.3% 59.1% 65.2%

Table 2 Results of the ablation study

Model AP MOTA IDP IDR IDF1

Backbone 46.5% 74.7% 71.9% 58.5% 64.9%
Backbone + CA 47.7% 75.1% 72.5% 58.8% 65.3%
Backbone + ACM 47.7% 75.2% 72.6% 59.1% 65.4%
This work 47.7% 75.4% 72.9% 59.2% 65.7%

Fig. 2 Cell-tracking results obtained by processing time-lapse images using the HFM-Tracker algorithm. (a) Example of image stacks tracked during
the 6-hour period. (b) Image of the last frame showing the recognized profile and motion trajectory of each cell. (c) Zoom-in image of cell-42 for
detailed time-series tracking results.
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shape of a cell resembles a perfect circle. It can be calculated
as follows:

Roundness ¼ 4π� area
perimeter 2 ð11Þ

As depicted in Fig. 3, medium cells constitute a large
portion of the cultured MCF-7, and these could be assigned as
the interphase cells. Large and small cells are mainly in the
mitotic phases, as their sizes grow quickly and then divide
into two small-sized daughter cells. As expected, the perimeter
of the cells is positively correlated with the cell area (Fig. 3a).
And the characteristic of roundness generally shows an inverse
relationship with the cell area, while the aspect ratio exhibits
the opposite trend (Fig. 3b and c). Furthermore, it indicates
that the average cell perimeter, roundness, and aspect ratio are
approximately 150 μm, 0.6 and 2.2 respectively, suggesting the
majority of cells exhibit low sphericity and angular mor-
phologies. The roundness of small cells is closer to 1, which

further confirms that small cells are mainly newly divided cells
with spherical shape.

The cell tracking performance of this HFM-Tracker algor-
ithm was further validated by depicting the trajectories of
cancer cells over a long period of time. As shown in Fig. 4, the
cultured MCF-7 cells actively migrate through the field of view
during a 24-hour recording, with several cells even migrating
1000 pixels. The colours in the time-resolved motion trajec-
tories represent individual cells, and it can be easily seen that
most cells in the field of view were continuously tracked
during the 24-hour recording. Although there are overlapping
and crossing motion trajectories of some cells, this proposed
HFM-Tracker algorithm could still achieve effective cell reco-
gnition and cell tracking.

Moreover, the HFM-Tracker algorithm was further applied
for the evaluation of the effect of hydrogen peroxide on cellular
morphologies and migrations. The cell motion trajectories in
Fig. S3† demonstrated that the presence of hydrogen peroxide

Fig. 3 Scatter plots of typical cell morphological features, cell perimeter (a), roundness (b), and aspect ratio (c) versus cell area, with a total cell
count (N = 398) indicated. The blue, orange, and green dots in the scatter plots represent small, medium, and large cells, respectively.
Corresponding density distribution plots for each morphological feature are shown on the top and right panels.

Fig. 4 The trajectory tracking of MCF-7 cells over 24 hours using the HFM-Tracker algorithm, showing the time-resolved three-dimensional
motion trajectories (a), and the integrated cell trajectory in two dimensions (b), with a total cell count (N = 96) indicated.
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reduced the cellular mobility effectively. MCF-7 cells in normal
conditions (Fig. 5a) and in the presence of 0.5 mM hydrogen
peroxide (Fig. 5b) were recognized via the HFM-Tracker algor-
ithm by collecting six images within one hour. The capabilities
of cell migration could be revealed by employing the mean dis-
placement (MD), which represents the mean distance (μm)
migrated per hour by the cell centroid. Fig. 5 shows the scatter
plots of the MD versus the cell area comparing the cells in the
absence and presence of hydrogen peroxide. It is observable
that the MD of MCF-7 cells was greatly reduced by the incu-
bation with hydrogen peroxide, with more concentrated area
distributions of all the cells.

Further time-resolved characteristics, including cell per-
imeter, area, roundness, aspect ratio and MD are shown in
Fig. S4.† It is shown that the MD shows a more obvious dis-
tinction to reveal the effect of hydrogen peroxide on the cellu-
lar activity. Therefore, HFM-Tracker could be used to compre-
hensively characterize cells with minimal requirement of
bright field images, and serve as a well-adapted algorithm for
rapid cell tracking.

4. Conclusion

In summary, a cell tracking algorithm named HFM-Tracker
was developed for accurate cell identification and migratory
trajectory tracking. The algorithm first obtained the initial
octagonal contour frame of target cells by constructing the
initial contours of cell images. A CA-module-based regression
model was subsequently involved to predict the changes in the
cell contours, determining the shape and position of each cell

accurately. Finally, an ACM module-based cell tracking algor-
ithm achieved the efficient association and tracking of the
motile cells. It is demonstrated that HFM-Tracker exhibits
superior performance in various evaluation metrics for detec-
tion and tracking, achieving 75% in MOTA and 65% in IDF1.
Furthermore, this algorithm provides important insights for
broad applications as it allows for a detailed examination of
cell morphology changes and migration rates. This is crucial
for elucidating the complex interplay between aberrant cellular
behaviours in migration-related biological processes, playing
an important role in biochemical and clinical fields.
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