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The development of enhanced strategies with excellent biocompat-
ibility is critical for electrochemiluminescence (ECL) imaging of single
cells. Here, we report an ECL imaging technique for a single cell
membrane protein based on a Coz0, nanozyme catalytic enhance-
ment strategy. Due to the remarkable catalytic performance of Coz0,4
nanozymes, H,O; can be efficiently decomposed into reactive oxygen
radicals, and the reaction with LO12 was enhanced, resulting in
stronger ECL emission. The anti-carcinoembryonic antigen (CEA)
was coupled with nanozyme particles to construct a probe that
specifically recognized the overexpressed CEA on the MCF-7 cell
membrane. According to the locally enhanced visualized lumines-
cence, the rapid ECL imaging of a single cell membrane protein was
eventually realized. Accordingly, Coz0, nanozymes with highly effi-
cient activity will provide new insights into ECL imaging analysis of
more biological small molecules and proteins.

Electrochemiluminescence (ECL) is a kind of optical radiation
phenomenon produced by chemical molecules undergoing
electrochemical reaction.'™ ECL does not require an additional
excitation light source, since the reaction process depends on
the applied voltage to drive the luminescence process, which
effectively avoids the interference of light scattering and
improves the detection sensitivity. It has become a powerful
analytical technique, widely used in biochemical analysis,*
pharmaceutical analysis,” environmental analysis® and other
fields. In view of the urgent need for high analytical throughput
and spatial resolution, ECL imaging was created by coupling
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ECL technology with optical microscopy. This new imaging
method can not only achieve high-throughput and visualization of
biomolecules,” but also be applied to the research of spatiotem-
poral resolution imaging of single entities such as particles, cells
and bacteria.* " It can provide more spatial detail information,
such as identification of cellular contents and structures. Small
molecules in cells or released from cells, (sub-)cellular structures
including cell membranes,"*'* proteins,'®"® mitochondria® and
intracellular hierarchical structures such as the nucleolus,
nucleus and endoplasmic reticulum'” have been visualized by
ECL imaging.'® With the enhancement effects of silica nanochan-
nels on ECL intensity, Su et al have explored the dynamic
variation of cell-matrix adhesions during collective migration
using the negative imaging mode.'®>' Despite the significant
achievements in ECL imaging, it has the technical limitation of
insufficient sensitivity and time resolution due to the weak
luminescence signal generated by the luminophore. It is a chal-
lenge to further develop a novel biocompatible approach of ECL
imaging, and enhance the ECL intensity, thereby improving the
sensitivity and temporal resolution.

Nanozymes have sparked widespread research due to their
unique properties of nanomaterials and catalytic activity.**> >
They can efficiently catalyze the substrates of enzymes under
mild conditions, showing catalytic efficiency and enzymatic
reaction kinetics similar to natural enzymes. In view of their
advantages such as adjustable catalytic activity, easy large-scale
synthesis, higher physiochemical stability, higher durability
and lower costs,”® nanozymes have attracted considerable
interest and represent great potential applications in biomedi-
cine, disease diagnosis, the environment and biological
detection. Numerous studies have indicated that many nano-
materials have been discovered to possess nanozyme proper-
ties, such as Fe;0,,>® AuNPs,?”*® carbon dots,?° and so on.
Among them, Co;0, nanoparticles, with catalase-like activity,
can be adopted as accelerators of H,0, for enhancing the ECL
emission of the luminol-H,O, system, because the conversion
of the Co®"/Co®" redox pair could efficiently excite the genera-
tion of electron holes, and then react with the molecular orbital
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Scheme 1 ECL mechanism based on the CozO4 nanozyme for CEA
antigen imaging at the cellular membrane.

of H,0, for promoting its decomposition.’® Based on this
advantage, the Coz;O, nanozyme can be combined with the
luminol-H,0, ECL system, and it is expected to significantly
improve the ECL intensity, thereby further improving the
sensitivity and time resolution of the imaging technology and
achieving rapid single-cell ECL imaging analysis.

Herein, a Co;0, nanozyme was used as a catalyst of the
luminol-H,0, system for single cell ECL imaging. H,O, pro-
duces reactive oxygen species by the catalysis of Co;0,. Under
the condition of applying a suitable voltage, L012 (a luminol
analog with high ECL efficiency) undergoes an electrochemical
reaction to produce intermediates, which in turn react with
reactive oxygen species to produce an ECL signal (Scheme 1).
The ECL intensity of the L012-H,0, system was significantly
enhanced and achieved ultra-sensitive visualization of H,O,.
Subsequently, a Co;0, nanozyme-labeled CEA antibody was
used as a probe to achieve sensitive and rapid imaging of
CEA at the cellular membrane. This work provides a new
approach for high-resolution ECL imaging.

The diameter of the Co30, nanoparticles used in this study
is ~30 nm, as characterized in the transmission electron
microscopy (TEM) image (Fig. S1, ESIf). To investigate the
enhancement effects of the Co;0, nanozyme, the electroche-
mical and ECL curves of the L012-H,0, system on Co3;0, coated
ITO electrodes were measured in 10 mM PBS containing
200 uM L012 and 20 uM H,0,. From Fig. 1A, in the presence
of Co;0,, the ECL intensity from L012 and H,0, improved to
pprox. 3.0 fold higher than that of the bare ITO electrode. This
enhancement should be ascribed to the excellent catalytic
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Fig. 1 (A) ECL profiles and (B) CV curves of the L012-H,O, system at the
ITO surface with and without CosO,4. Working solution: 10 mM PBS
containing 200 uM L012. Scan range: —1.0 to 1.0 V, scan rate: 0.1V s,
PMT voltage: 600 V.
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performance of Co;0,, which accelerates the decomposition
of H,0, to produce reactive oxygen radicals. The corresponding
CV curves show that the peak current of the Co;0,-coated ITO
electrode is significantly enhanced compared with the bare ITO
electrode (Fig. 1B), indicating that the presence of Co;0, could
promote electron transport. The enhancements of both the ECL
and peak current demonstrate that the introduction of Co;0,
served as an accelerator promoting the decomposition of
coreactant H,0, and enhancing the ECL intensity of the
L012-H,0, system. A possible ECL mechanism is proposed
(eqn (1)—(4)). L012 anion LH™ is oxidized to radical L*~ during
the electrochemical scanning. Meanwhile, the Co;0, catalyzes
H,0, to produce abundant oxygen radicals O,*~ and OH*® on
the ITO surface. In addition, Co;0, can facilitate the reaction of
L*" and the oxygen radical to generate activated intermediate
3-AP, *, which goes back to the ground state, generating the
ECL emission.

LH —e — LH* > L +H' (1)
Co30

H,0, 2% 0, + H' )

L +0,° - 3-AP” % 3)

3-AP>"* — 3-AP>” + hv 4)

The diluted Co;0, was coated on the ITO slide, which was then
placed in 10 mM PBS containing 200 pM L012 and 20 pM H,0,,
and the ECL signal was generated by applying a conversion
mode voltage between 1.0 V (2 s) and —1.0 V (0.5 s) using a
voltage transmitter. The ECL images were obtained using
EMCCD with an exposure time of 1 s by applying 1.0 V voltage.
Fig. S2 (ESIt) shows the bright-field and ECL image of Co;0, on
the ITO slide. The light spots generated in the ECL image can
coincide with the particles in the bright field image, indicating
that the presence of Co;0, produces locally enhanced light
spots. In addition, the voltage from 0.5 V to 1.2 V at the ITO
slide was applied to induce ECL. The distinguished lumines-
cence spots at Co;0, nanoparticles can be clearly seen under a
voltage of 0.7 V from Fig. 2, while no luminescence is recorded
from the ITO slide, which is attributed to the fact that Co;0,
can catalyze the L012-H,O, system to produce locally enhanced
signals. When the applied voltage reaches 1.0 V, the lumines-
cence spots can be seen from all the CozO, nanoparticles.
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Fig. 2 (A) ECL image of CozO,4 at the ITO slides with different applied
potentials; the exposure time was 1 s. (B) The luminescence intensity
across the particle circle in image A. Scale bar: 5 pm.
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A continuous increase in the voltage from 0.5 to 1.2V results in
an increase in the ECL intensity from the Coz;O, particle
(Fig. 2B), which is consistent with our previous observation.
When the voltage exceeds 1.0 V, the increase in ECL intensity is
not significant, therefore 1 V was selected as the ECL imaging
voltage.

The effect of exposure time on ECL imaging was also explored.
Under the condition of applied voltage at 1 V, when the exposure
time is 500 ms, all the particles at the ITO interface produce
clearly distinguishable luminescence spots (Fig. 3). Compared
with the previous ECL imaging analysis,">*"*> the presence of
the Co;0, nanozyme can shorten the exposure time obviously,
indicating that the catalytic activity of the Co;0, nanozyme can
significantly enhance the ECL luminescence of the L012-H,O,
system, endowing it with higher temporal resolution. In addition,
the stability of ECL luminescence using the Co;0, nanozyme as a
catalyst was also investigated. As shown in Fig. 4, the intensity
maintains good stability (the relative standard deviation is less
than 4.4%) during 30 consecutive images, which is extremely
important in single-cell ECL imaging.

The quantitative visualization of H,0, at individual Coz0,
nanoparticles can further validate the catalytic performance of
the Co;0, nanozyme. Thus, we investigated the ECL visualiza-
tion of different concentrations of H,O, (50 pM-20 puM) at
Co30,4 nanoparticles in 10 mM PBS containing 200 uM L012. As
shown in Fig. 5 and Fig. S3 (ESI{), as the concentration of H,0,
increases, the ECL intensity of the light spot gradually
increases. The spot intensity of three randomly selected nano-
particles shows a good positive correlation with H,0, concen-
tration. The visualization detection limit is as low as 50 pM,
which is much less than the previously reported detection limit
(2 uM) under a voltage of 1.0 V.*? The results demonstrate that
the Co;0, nanozyme can effectively catalyze the L012-H,O,
system to generate strong luminescence under a low H,0O,
concentration, endowing this strategy with extraordinary visua-
lization sensitivity and ensuring the possibility of further
visualization of single cell membrane proteins.

Imaging analysis of low-abundance proteins on the cell
surface is crucial for elucidating the molecular mechanisms
and related research on disease progression.'®**** Since the
CEA antibody enables the selective recognition of cells that
express CEA, MCF-7 cells with overexpressed CEA and HeLa

Fig. 3 ECL image of Coz0O4 at ITO slides with different exposure times;
the applied potential was 1 V. Scale bar: 5 pm.
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Fig. 4 (A) ECL image of Coz0O4 at ITO slides; (B) the fluctuation of ECL
intensity at three particles labeled as 1, 2 and 3 in (A). The exposure time
was 500 ms; the applied potential was 1 V. Scale bar: 5 pm.

600

50 pM H,0,

5004

[N
PRI
'S

400 S —

07
300 y’

Luminescence / a.u.
\

200

o

0.0 5.0%10°  1.0x10° 1.5x10* 2.0x10°
Concentration / nM

Fig. 5 (A) ECL image of Coz0,4 at ITO slides with different concentrations
of H,O,; the exposure time was 500 ms, and the applied potential was 1 V.
(B) Correlation between the luminescence of three particles and the
concentration of H,O,. Scale bar: 5 pm.

cells were chosen as the experimental and negative control
group, respectively. MTT assay confirms that Co;O, has a low
cytotoxicity to MCF-7 cells (Fig. S4, ESIt). The cells were
cultured on the ITO slides to the adherent state and fixed with
4% paraformaldehyde to ensure the interaction between the
antigen and the antibody."® MCF-7 cells show obvious lumines-
cence signals after modifying the functionalized probe Co;0,-
antibody, while no obvious signal was generated in the HeLa
cell region (Fig. 6). These results confirm that the luminescence
observed in MCF-7 cells is attributed to the connection of the
functionalized probe to the CEA antigen on the cell membrane,
so that L012 and H,O, in the solution only produced an
enhanced ECL signal on the cell surface. We consider that
the Co;0, nanozyme has great potential in imaging other
biomarkers on cell membranes owing to its favorable enzyme
catalytic activity and biocompatibility.

In summary, we successfully developed a novel Co;0,
nanozyme-based ECL imaging approach for the analysis of
single cell membrane proteins for the first time. The excellent
catalytic performance of Co;0, nanozymes can effectively accel-
erate the decomposition of H,0, into reactive oxygen species
and promote the electrochemical reaction of the L012-H,0,
system, inducing an enhanced ECL signal in a very short
period. As a result, our ECL imaging system achieves rapid
and sensitive imaging of single cell membrane proteins.
Furthermore, our proposed Co;O, nanozyme-enhanced ECL

This journal is © The Royal Society of Chemistry 2023
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Fig. 6 Bright field (A) and ECL image (B) of MCF-7 cells; bright field (C)
and ECL image (D) of Hela cells on ITO slides. Both MCF-7 and Hela cells
were incubated with CozO4-CEA antibodies and then washed three times.
Working solution: 10 mM PBS containing 200 uM L012 and 100 pM H,O,.
The exposure time was 500 ms, the applied potential was 1 V. Scale bar:
40 pm.

imaging exhibits good versatility, which sheds new light on the
ECL imaging of biological molecules.
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