
RSC Advances

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
Introducing DDE
Department of Chemical & Materials Engin

Cruces, New Mexico, 88003-8001, USA. E-m

† Electronic supplementary information
includes a pdf le containing: the 14 cha
partitioning Lagrangian and ow diag
analysis (S3); algorithm for total electron
description listing big arrays and in w
deallocated (S5); table and description
description of how to use the enclose
description of how to use the enclosed
includes a zip format archive containing:
xyz les containing DDEC6 NACs,
parameters, ASMs, SBOs, and r-cubed
overlap populations; a Fortran module c
a Fortran module containing spin functio

Cite this: RSC Adv., 2018, 8, 2678

Received 26th October 2017
Accepted 13th December 2017

DOI: 10.1039/c7ra11829e

rsc.li/rsc-advances

2678 | RSC Adv., 2018, 8, 2678–2707
C6 atomic population analysis:
part 4. Efficient parallel computation of net atomic
charges, atomic spin moments, bond orders, and
more†

Nidia Gabaldon Limas and Thomas A. Manz *

The DDEC6 method is one of the most accurate and broadly applicable atomic population analysis

methods. It works for a broad range of periodic and non-periodic materials with no magnetism, collinear

magnetism, and non-collinear magnetism irrespective of the basis set type. First, we show DDEC6

charge partitioning to assign net atomic charges corresponds to solving a series of 14 Lagrangians in

order. Then, we provide flow diagrams for overall DDEC6 analysis, spin partitioning, and bond order

calculations. We wrote an OpenMP parallelized Fortran code to provide efficient computations. We show

that by storing large arrays as shared variables in cache line friendly order, memory requirements are

independent of the number of parallel computing cores and false sharing is minimized. We show that

both total memory required and the computational time scale linearly with increasing numbers of atoms

in the unit cell. Using the presently chosen uniform grids, computational times of �9 to 94 seconds per

atom were required to perform DDEC6 analysis on a single computing core in an Intel Xeon E5 multi-

processor unit. Parallelization efficiencies were usually >50% for computations performed on 2 to 16

cores of a cache coherent node. As examples we study a B-DNA decamer, nickel metal, supercells of

hexagonal ice crystals, six X@C60 endohedral fullerene complexes, a water dimer, a Mn12-acetate single

molecule magnet exhibiting collinear magnetism, a Fe4O12N4C40H52 single molecule magnet exhibiting

non-collinear magnetism, and several spin states of an ozone molecule. Efficient parallel computation

was achieved for systems containing as few as one and as many as >8000 atoms in a unit cell. We varied

many calculation factors (e.g., grid spacing, code design, thread arrangement, etc.) and report their

effects on calculation speed and precision. We make recommendations for excellent performance.
1. Introduction

Computational chemistry is based on four main kinds of
calculations: quantum chemistry (QC) calculations that self-
consistently compute electron cloud distribution, classical
atomistic simulations such as classical molecular dynamics or
eering, New Mexico State University, Las

ail: tmanz@nmsu.edu

(ESI) available: ESI documentation
rge partitioning Lagrangians (S1); spin
ram (S2); equations for bond order
density grid correction (S4); table and
hich modules they are allocated and

of computational parameters (S6);
d reshaping sub routines (S7); and
spin functions (S8). Additionally ESI
the system geometries; Jmol readable
atomic multipoles, electron cloud
moments; DDEC6 bond orders and
ontaining reshaping subroutines; and
ns. See DOI: 10.1039/c7ra11829e
Monte Carlo simulations, coarse-grained models, and whole
device models.1–4 Electrons and atomic nuclei are the elemen-
tary units in QC calculations. Atoms are the elementary units in
classical atomistic simulations. The elementary units in coarse-
grained models are much larger than individual atoms but
much smaller than a whole device. Multi-scale modeling
connects these different length scales: QC / atomistic simu-
lations / coarse-grained models / whole device models.1–4

Just as there must be techniques for performing simulations
at each of these different length scales, so also there must be
techniques for connecting them. As illustrated in Fig. 1, atoms-
in-materials (AIM) methods use information obtained by QC
calculations to compute properties like net atomic charges
(NACs), atomic spin moments (ASMs), bond orders, atomic
multipoles, atomic polarizabilities, atomic dispersion coeffi-
cients, electron cloud parameters, and other properties.5 These
atomistic descriptors are fundamental to understanding
various chemical properties of materials: electron transfer
between atoms in materials, magnetic ordering in magnetic
materials, various types of chemical bonds, van der Waals
This journal is © The Royal Society of Chemistry 2018

http://crossmark.crossref.org/dialog/?doi=10.1039/c7ra11829e&domain=pdf&date_stamp=2018-01-10
http://orcid.org/0000-0002-4033-9864
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA008005

Fig. 1 The triple role of AIM methods. AIM methods provide atomistic descriptors that can be used (i) to understand the chemical properties of
materials, (ii) to parameterize force fields used in classical atomistic simulations, and (iii) to provide dispersion interactions in some DFT +
dispersion methods or to produce localized electron distributions for use in QC methods.

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
interactions, etc. They can also be used to construct force elds
used in classical atomistic simulations. For example, NACs (and
optionally atomic multipoles) can be used in force elds to
reproduce the electrostatic potential surrounding amaterial.1,6–8

The atomic dispersion coefficients are used in force elds to
model attractive forces caused by uctuating multipoles.9

Atomic polarizabilities can be used in force elds to model
interactions caused by induced multipoles.10,11 AIM methods
are the great connector between QC and atomistic simulations
because they facilitate multi-scale modeling by allowing force
elds for the classical atomistic simulations to be parameter-
ized via automated methods from QC calculations.12

As illustrated in Fig. 2, we envision six pillars of great
performance for an AIMmethod: (a) high chemical accuracy, (b)
high force eld accuracy, (c) applicability to a broad range of
material types, (d) predictably rapid, robust, and unique
convergence, (e) computational convenience, and (f) applica-
bility to a broad range of atomistic descriptors. For an AIM
method to have high chemical accuracy, it should accurately
describe the direction and magnitude of electron and spin
transfer among atoms in materials, and the assigned NACs and
ASMs should be chemically consistent. For an AIM method to
have high force-eld accuracy, it should yield force-eld
parameters that accurately reproduce the electrostatic poten-
tial surrounding a material, preferably with good
This journal is © The Royal Society of Chemistry 2018
conformational transferability. An AIM method should prefer-
ably work well for a broad range of material types including
small and large molecules, ions, organometallic complexes,
porous and dense solids, solid surfaces, nanostructures, both
magnetic and non-magnetic materials, both heavy and light
chemical elements, both organic and inorganic materials, both
conducting and insulating materials, etc. In order to be used as
a default atomic population analysis method (APAM) in QC
Fig. 2 Six pillars of great performance for an AIM method.

RSC Adv., 2018, 8, 2678–2707 | 2679

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
programs, an AIM method should always converge to a unique
solution at a predictably rapid rate. The AIM method should be
computationally convenient. Finally, an AIM method should
preferably work well for computing a broad range of atomistic
descriptors including NACs, atomic multipoles, ASMs, bond
orders, atomic polarizabilities, atomic dispersion coefficients,
electron cloud parameters, etc.

To be well-posed, an APAM must be a functional of the elec-
tron and spin magnetization density distributions with no
explicit dependence on the basis set type or on specic density
matrix components or density matrix eigenstates. APAMs lacking
a mathematical limit as the basis set is improved towards
completeness (e.g., Mulliken13 and Löwdin14) have no physical
meaning, because nature corresponds to the complete basis set
limit.15 APAMs depending on specic density matrix components
or density matrix eigenstates yield inconsistent results for
different quantum chemistrymethods because near the complete
basis set limit the mapping between density matrix and electron
density distribution becomes many-to-one.16 Different quantum
chemistry methods yielding equivalent electron density distri-
butions and equivalent energies can have vastly different density
matrix components and density matrix eigenstates.16

In previous articles of this series, we introduced the DDEC6
AIM method.17,18 In the rst article, we described the DDEC6
charge partitioning theory and methodology and showed the
assigned NACs and ASMs are chemically consistent.17 We
designed the DDEC6 charge partitioning algorithm to meet
nine performance goals.17 The DDEC6 method uses the same
spin partitioning algorithm as used for earlier DDECmethods.19

In the second article, we tested DDEC6 performance across
a broad range of material types and made important compari-
sons to experimental data.18 In these two prior articles, we
demonstrated the DDEC6 method has the rst four pillars of
high performance: (a) high chemical accuracy, (b) high force
eld accuracy, (c) applicability to a broad range of material
types, and (d) predictably rapid, robust, and unique
convergence.17,18

The purpose of the present article is to show how various
components of the DDEC6method can be combined into a fully
functional program to achieve pillar (e) computational conve-
nience. Some important aspects of computational convenience
include: (1) low computational time, (2) reasonable memory
requirements, (3) sufficiently high numerical precision, (4) easy
to compute in parallel, (5) easy to prepare the required inputs
with minimal manual labor, and (6) easy to read and interpret
program outputs.

The sixth pillar of high performance – (f) applicability to
a broad range of atomistic descriptors – is partially addressed in
the present and previous articles and will be further addressed
in future articles. Two previous articles addressed the chemical
and force eld accuracy of the DDEC6 NACs, atomic dipoles,
ASMs, and electron cloud parameters.17,18 A recent article
described the theory, methodology, chemical accuracy, and
broad applicability of the DDEC6 bond orders.16 The present
article focuses on parallel computations of these descriptors,
with an emphasis on quantifying computational times, paral-
lelization efficiencies, and memory requirements. Future
2680 | RSC Adv., 2018, 8, 2678–2707
articles will describe how the DDEC6 method can be extended
to compute atomic polarizabilities and dispersion coefficients.

We anticipate this article will be of interest to both users and
programmers. Computational materials scientists will benet
from an enhanced understanding of how the DDEC6 method
works, its computational performance, and the calculation
steps involved. These computational materials scientists are
potential users of the DDEC6 method. Second, soware devel-
opers will benet from understanding what capabilities the
DDEC6 method could bring by being interfaced with their QC
packages. The ow diagrams will help both users and
programmers understand the calculation sequence.
2. Flow diagrams
2.1 System denition

The system notation we use here is the same as previously
published. For completeness, we restate the basic terminology.
“Following Manz and Sholl,29 we begin by dening a material as
a set of atoms {A} located at positions {~RA}, in a reference unit
cell, U. For a nonperiodic system (e.g., a molecule), U is any
parallelepiped enclosing the entire electron distribution. The
reference unit cell has ‘1 ¼ ‘2 ¼ ‘3 ¼ 0, and summation over A
means summation over all atoms in this unit cell. For a periodic
direction, ‘i ranges over all integers with the associated lattice
vector ~vi. For a nonperiodic direction, ‘i ¼ 0 and ~vi is the cor-
responding edge of U. Using this notation, the vector and
distance relative to atom A are given by

~rA ¼~r � ‘1~v1 � ‘2~v2 � ‘3~v3 � ~RA (1)

and rA¼ k~rAk.”28 The spherical averages of a scalar function f(~rA)
and vector function~g(~rA) about an atom center are dened by

f avgðrAÞ ¼ 1

4pðrAÞ2
þ
f
�
~r

0
A

�
ddirac

�
r
0
A � rA

�
d3~r

0
A (2)

~gavgðrAÞ ¼ 1

4pðrAÞ2
þ
~g
�
~r
0
A

�
ddirac

�
r
0
A � rA

�
d3~r

0
A (3)

“In this article, we are only interested in studying time-
independent states of chemical systems. For such systems,
a time-independent electron distribution

r(~r) ¼ hJel|r̂(~r)|Jeli (4)

can be theoretically computed or experimentally measured33,34

where Jel is the system's multi-electronic wavefunction within
the Born–Oppenheimer approximation and r̂(~r) is the electron
density operator”.17

To include enough distinct letters for mathematical
symbols, we used characters from the Roman, Greek, and
Cyrillic alphabets.
2.2 Master ow diagram

The DDEC6 method was implemented in the CHARGEMOL
program using Fortran, a compiled language. The advantage of
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
compiled languages is that they are usually faster than inter-
preted languages. We used two programming books that
explain Fortran commands.20,21 Our program was written using
the Fortran 2008 standard with a small number of compiler
extensions. Our CHARGEMOL program can be downloaded
from http://www.ddec.sourceforge.net.

As shown in Fig. 3, the CHARGEMOL program is divided into
modules arranged to compute the NACs, ASMs, bond orders,
and other properties. The xyz output les containing the NACs,
ASMs, r-cubed moments, etc. are readable by the Jmol22,23 visu-
alization program. In addition to the xyz output les, the
program also prints a logle summarizing the calculation
sequence including walltime spent for each part of the calcu-
lation. The way each block works is described below.

Read input les. The program reads the system's informa-
tion from input le(s) containing geometry, electron density,
and spin density (for magnetic materials). Our program reads
the input information in chunks so that it does not overow the
read buffer set by the operating system. This allows the program
to read large input les without generating an overow error.
Currently, the program can read several input le formats:
VASP,24–27 wfx, xsf, and cube les. CHARGEMOL identies the
type of input le and reads it using an appropriate module. At
Fig. 3 Flow diagram of the DDEC6 method as implemented in the CH
followed if using atom-centered integration grids.

This journal is © The Royal Society of Chemistry 2018
this point, the program might read the electron and spin
distributions in terms of grid points or in terms of basis set
coefficients.

Generate density grids. The program currently uses
a uniform grid. For a periodic system, the grid points ll
a parallelepiped corresponding to the unit cell. For a non-
periodic system, the grid points are distributed over a parallel-
epiped enclosing the entire molecule. In cases where the basis
set coefficients are read from the input le, the program will
choose the size of the grid using a preferred grid spacing. Then
the program will compute the electron and spin density grids.
Details on how these grids are computed can be found in the
ESI of prior publications.17,28

Add missing core. If the input le lacks the information
about the core electron density (e.g., if the electron density was
obtained with a pseudopotential), the program will add back in
the missing core density in order to perform an effective all-
electron calculation.28–30 In this case, the density of the
missing core electrons is obtained from a precomputed library
of reference core densities for elements 1–109 that is stored
within the program.

Check grid spacing and number of valence electrons. Before
starting charge partitioning, the program performs the
ARGEMOL program. The dotted line indicates the path that would be

RSC Adv., 2018, 8, 2678–2707 | 2681

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
following checks to make sure the grid spacing is adequate and
all electrons are properly accounted for:

(1) The program checks to make sure the volume per grid
point is less than maxpixelvolume.

(2) The program integrates a test function over the integra-
tion grid and makes sure the numerically computed value is
within a chosen tolerance of the known analytic value.

(3) The program integrates the valence electron density grid
to numerically compute the number of valence electrons and
adds to this the analytic number of core electrons and the
valence occupancy corrections. The program checks to make
sure this numerically computed total number of electrons
matches the sum of atomic numbers minus the unit cell net
charge to within a chosen tolerance.

If these tests are passed, the program proceeds. If not, the
program terminates with a message describing the problem
with the input les.

Core electron partitioning including core grid correction.
The program uses an iterative scheme to assign a core electron
density to each atom. This includes a core grid correction that
ensures the assigned core electron density integrates to the
correct value for each atom. Details of this core electron parti-
tioning including core grid correction are described in the ESI
of our previous article.17 As indicated by the dotted line in Fig. 3,
this step would be skipped if using atom-centered integration
grids, because variable-spaced atom-centered grids31,32 can
accurately integrate the total electron density without the need
for valence-core electron separation.30

Charge partitioning. Charge partitioning is performed to
compute and store {wA(rA)}, {W(~r)}, {ravgA (rA)}, and the NACs {qA}.
{rA(~rA)} can be regenerated whenever needed from the stored
values of {wA(rA)}, {W(~r)}, and {r(~r)}. While different charge
partitioning algorithms could be employed (e.g., Hirshfeld, ISA,
DDEC3, DDEC6), we strongly recommend the DDEC6 algorithm
because of its high accuracy, broad applicability, computational
efficiency, and convergence robustness.17,18

Multipole moment analysis. The program computes and
prints the atomic dipoles and atomic traceless quadrupole
moments for all materials. This module also computes and
prints the eigenvalues of the atomic traceless quadrupole
matrix for each atom. If the material is non-periodic, then the
program also computes and prints the total dipole moment,
total traceless quadrupole moment, and the eigenvalues of the
total traceless quadrupole matrix about the system's center-of-
mass.

Generate net atomic charges le. This xyz le contains the
atomic numbers, atomic coordinates, unit cell parameters (for
periodic materials), NACs, dipoles and quadrupoles, and
traceless quadrupole moment eigenvalues. Also, the CHARGE-
MOL program performs a linear least squares t of to
ln(ravgA (rA)) over the range rmin_cloud_penetration # rA
cutoff_radius. For each atom, the electron cloud parameters
(and) are printed along with the squared correlation
coefficient.

Spin partitioning. The ASMs will be computed if the input
les have spin distribution information. To maximize perfor-
mance, the program has separate spin partitioning modules for
2682 | RSC Adv., 2018, 8, 2678–2707
collinear and non-collinear magnetism. The resulting ASMs are
capable of reproducing the system's spin magnetic eld to good
accuracy.19

Generate atomic spin moments le. The program writes an
xyz le containing the atomic numbers, atomic coordinates,
unit cell parameters (for periodic materials), and ASMs. If the
system contains non-collinear magnetism, this xyz le will
contain the ASM vectors and their magnitudes. The total spin
magnetic moment of the unit cell is also computed and printed.

Prepare bond order density grids. The non-linearity of elec-
tron exchange means the number of electrons exchanged
between two atoms must be computed using the total electron
density without valence-core separation. Therefore, the CHAR-
GEMOL program corrects the total electron density grid to
include the valence occupancy corrections, so that the total
electron density grid integrates to the correct number of elec-
trons for each atom. The purpose of this correction is to reduce
integration errors that result from the nite grid spacing.
Section S4 of ESI† contains details of how this correction is
performed (if using variable-spaced atom-centered integration
grids instead of uniformly spaced integration grids, then this
correction would be unnecessary).

Bond order analysis. Bond order analysis computes (a) the
bond orders between pairs of atoms in the material, (b) the sum
of bond orders (SBO) for each atom, (c) the overlap populations
between pairs of atoms in the material, (d) the contact
exchanges between pairs of atoms in the material, and (e) the
summed contact exchange (SCE) for each atom.

Generate bond orders and overlap populations les. The
bond orders and SBOs are printed in an xyz le. All bond orders
greater than BO_print_cutoff are printed. For each bond order,
the two atoms are printed along with the translation vector for
the second atom. The rst atom is located in the reference unit
cell. The format of the le makes it easy to locate all of the
bonds for any desired atom. The overlap populations are prin-
ted to a separate le.

Print atomic radial moments and related properties. The
atomic r-cubed moment

D
ðrAÞ3

E
¼

þ
rAð~rAÞðrAÞ3d3~rA (5)

is computed and printed to an xyz le. If desired, the second-
and fourth-order radial moments can also be computed and
printed. If desired, other related properties can also be
computed and printed.
2.3 Lagrangian series formulation of DDEC6 charge
partitioning

Charge partitioning refers to the process of assigning atomic
electron distributions {rA(~rA)} to the atoms in a material. In all
Density Derived Electrostatic and Chemical (DDEC) methods,
rA(~rA) is simultaneously optimized to resemble its spherical
average, ravgA (rA), and a charge-compensated isolated reference
ion of the same element having a similar (but not necessarily
equal) charge to the atom in material.17,18,28,29,35 Because the
electrostatic potential V(~r) outside a spherical charge
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
distribution is the same as an equivalent point charge, opti-
mizing rA(~rA) to resemble ravgA (rA) makes the DDEC NACs ideally
suited for constructing atom-centered point charge models
used in force elds for classical atomistic simulations.17,18,28,29

By also optimizing rA(~rA) to resemble a charge-compensated
isolated reference ion of the same element in a similar charge
state, the assigned {rA(~rA)} are optimized to resemble real atoms
and maximize transferability between similar chemical
systems.17,18,28,29 Charge-compensated reference ions are used to
account for electrostatic screening by other atoms in the
material.17,18,28,29 Conditioning the reference ions to match the
material of interest allows the same ratio of spherical averaging
to reference ion weighting to be used for all materials.17,28

Table 1 lists the key features of DDEC6 charge partitioning.
Each feature was discussed in detail in our prior publication.17

These features are the result of several years of development.
Charge-compensated reference ions and spherical averaging
were already used in the DDEC/c1 and c2 methods published in
2010.29 Reference ion smoothing, reference ion conditioning,
one of the exponential tail constraints, some of the reshaping,
and the Nval

A $ 0 constraint were introduced in the DDEC3
method published in 2012.28 Radial cutoffs and effective all-
electron partitioning have been part of the DDEC methods
from the beginning.29 The earliest form of stockholder parti-
tioning dates back several decades before the DDEC methods.36

Early forms of stockholder partitioning used reference neutral
atoms or uncompensated charged reference ions.36,37 The iter-
ated stockholder atoms (ISA) method used pure spherical
averaging without any reference ions to compute the atomic
Table 1 Features of DDEC6 charge partitioning

Feature

NACs are functional of {r(~r)}

Stockholder type partitioning
Reference ion densities included in atomic weighting factors
Charge compensated reference ions

Reference ion conditioning

Fixed reference ion charge
Cutoff radius
The xed reference ion charge is optimized to resemble
the number of electrons in the volume dominated by each atom
Upper and lower bound constraints on the rate of
exponentially decaying buried atom tails

Adds missing core density (if any)

Uses weighted spherical average in atomic weighting factors

Seven charge partitioning steps
Uses smoothed reference ions

Constrains Nval
A $ 0

Atomic weighting factor reshaping is used when
applying the upper and lower bound constraints on
the rate of exponentially decaying buried atom tails

This journal is © The Royal Society of Chemistry 2018
weighting factors.38 A key improvement of the DDEC6method is
that it uses a xed reference ion charge with a total of seven
charge partitioning steps to ensure convergence to a unique
solution.17 To more accurately quantify electron transfer, this
xed reference ion charge is optimized to resemble the number
of electrons in the volume dominated by each atom.17 The
DDEC6 method uses both upper and lower bound constraints
on the rate of exponentially decaying buried atom tails to help
prevent buried atoms from becoming too diffuse28 or too con-
tracted.17 The DDEC6 method also uses a weighted spherical
average, rwavgA (rA), rather than a simple spherical average to
improve the accuracy by which NACs reproduce the electrostatic
potential surrounding the material.17

The DDEC6 NACs are functionals of the electron distribution
with no explicit dependence on the basis set representation or
spin magnetization density. The rational for this is that the
NACs should be a compact representation of charge transfer
between atoms in materials and also approximately reproduce
the electrostatic potential V(~r) surrounding the material. Since
charge transfer between atoms in a material cannot occur
without a change in r(~r) and V(~r) depends only on r(~r), it makes
sense for the NACs to be constructed as functionals of r(~r).17

Here, we show for the rst time that DDEC6 charge parti-
tioning corresponds to solving a series of 14 Lagrangians in
order. The DDEC6 method performs vastly better than any of
the single Lagrangian charge partitioning methods developed
to date.17,18 There are several reasons why such a Lagrangian
series performs better than a single Lagrangian for dening the
charge partitions. First, to make a Lagrangian convex, it is
Purpose

No explicit basis set dependence; consistent results for different SZ
values of a spin multiplet
Atomic densities sum to r(~r) at each position
Assigned {rA(~rA)} resemble real atomic ions
Accounts for charge compensation and dielectric screening in extended
materials
Matches reference ions to the material of interest to improve accuracy;
allows a constant proportion of spherical averaging to be used for all
materials
Allows convergence to a unique solution
Linear scaling computational cost
More accurately quanties electron transfer

Exponentially decaying atom tails help to ensure chemically meaningful
results; the upper and lower bound constraints help prevent buried
atoms from becoming too diffuse or too contracted
Effective all-electron partitioning even if the electron distribution was
generated using effective core potentials
Minimizes atomic multipoles to more accurately reproduce V(~r) with
NACs
Ensures predictably fast and robust convergence
Improves optimization landscape curvature by ensuring the reference
ions follow expected behavior
Core electrons are assigned to the correct atom
Reshaping improves the convergence accuracy by preserving the integral
of the atomic weighting factors when applying constraints to prevent
atoms from becoming too diffuse or too contracted

RSC Adv., 2018, 8, 2678–2707 | 2683

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
preferable (maybe even necessary) to keep the reference ion
charges xed. We previously showed the iterative Hirshfeld (IH)
and earlier DDECmethods that iteratively update the reference ion
charges to self-consistency are non-convex and converge non-
uniquely in some materials.17 We have not been able to prove
convexness for a single iteratively solved Lagrangian that combines
reference ion updating with weighted spherical averaging with
reshaping. The need to update the reference ion charges to
approximately match the AIM charges thus needs a Lagrangian
series. We prove the DDEC6 optimization landscape is convex by
showing each Lagrangian in this series is convex.

Second, separating charge partitioning from reshaping
Lagrangians requires only one charge cycle per charge parti-
tioning Lagrangian (except when the NA � Ncore

A $ 0 constraint
is binding), while a Lagrangian that performs both charge
partitioning and reshaping must be solved through an iterative
algorithm that requires several charge cycles over all grid points
to reach self-consistency. Consequently, a charge partitioning
Lagrangian series has faster, more computationally efficient,
predictable, and robust convergence than a single charge par-
titioning Lagrangian incorporating reshaping that is self-
consistently iterated to convergence.

However, having too many Lagrangians in the charge parti-
tioning Lagrangian series is detrimental. The reason has to do
with spontaneous symmetry breaking. Consider a system con-
taining two symmetry equivalent atoms. A small error 3 in the
input density grid may cause the minimum of a single
Lagrangian in this series to be symmetry broken by some
amount where describes the ratio of the output to the
input symmetry breaking. The input to the second Lagrangian
in the series will thus be symmetry broken by an amount
and its minimum will be symmetry broken by an amount .
Aer Lagrangians in the series, the spontaneous symmetry
breaking (SSB) equals

(6)

For , the magnitude of the output SSB will be
smaller (larger) than the input SSB 3. Even if , the output
SSB can be contained by keeping and 3 small. For and

, the output SSB cannot be contained and runaway
charges will result.

Therefore, optimal performance will be obtained by using
a charge partitioning Lagrangian series containing more than one
but not too many Lagrangians. What is an appropriate number of
Lagrangians in this series? Fourteen. These are dened as follows:

(7)

(8)

(9)
2684 | RSC Adv., 2018, 8, 2678–2707
(10)

The inputs for the ith Lagrangian only depend on the solution of
the previous (i � 1) Lagrangians. Every one of these 14
Lagrangians has positive denite curvature (i.e., strictly convex),
thereby guaranteeing that the nal solution is uniquely deter-
mined. The rst two Lagrangians are dedicated to computing
the target reference ion charges, {qrefA }. The third and fourth
Lagrangians compute the conditioned reference ion densities.
The 5th, 8th, 11th, and 14th Lagrangians are additional
conditioning steps. The 8th, 11th, and 14th Lagrangians also
enforce the constraint

Nval
A ¼ NA � Ncore

A $ 0 (11)

This total of ve conditioning steps gives a balanced ratio of
reference ion weighting to spherical averaging for all mate-
rials.17 The 6th, 9th, and 12th Lagrangians perform reshaping to
prevent the atomic density tails from becoming too diffuse. The
7th, 10th, and 13th Lagrangians perform reshaping to prevent the
atomic density tails from becoming too contracted. The reason
for separating reshaping to prevent the atomic density tails
from becoming too diffuse from reshaping to prevent the
atomic density tails from becoming too contracted is that these
two steps have different optimal reshaping exponents.17

Combining both reshaping steps into a single Lagrangian
would require using a single reshaping exponent, which would
produce suboptimal results for one of the two steps.

Table 2 summarizes the organization of these 14 Lagrang-
ians into seven charge partitioning steps. Section S1 of ESI†
contains the detailed mathematical forms of these 14
Lagrangians. The computational algorithm for these seven
DDEC6 charge partitioning steps was described in detail in our
previous article.17 A ow diagram for DDEC6 charge partition-
ing was presented in Fig. S2 of the ESI of our previous article.17

Fig. S1 and S3 of that article presented ow diagrams for
reshaping the conditioned reference ion density and to prevent
wA(rA) from becoming too diffuse, respectively.17 As noted in our
earlier publication, the Hirshfeld NACs, atomic dipoles and
quadrupoles and the CM5 NACs were readily computed and
printed during the rst charge partitioning step.17

We now briey summarize how these seven DDEC6 charge
partitioning steps were efficiently parallelized. Loops over
atoms and grid points were parallelized over the grid point
index. As demonstrated in Section 4.2 below, this provided
efficient parallelization even for systems containing only one
atom in the unit cell. Two pure subroutines were created to
perform reshaping. A pure subroutine is one that can be readily
parallelized over, because it has no side effects on data outside
the procedure. The rst of these subroutines performed
reshaping of the conditioned reference ion densities. The
second of these subroutines performed reshaping to prevent
wA(rA) from becoming too diffuse or too contracted. These
subroutines were parallelized over atoms, such that each
processor called the reshaping subroutine to act on a different
atom. For convenience, a Fortran module containing these
reshaping subroutines is provided in the ESI.†
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Table 2 DDEC6 charge partitioning minimizes a series of 14
Lagrangians arranged in seven charge partitioning steps

Charge
partitioning
step

Stockholder
Lagrangian

Enforce
NA � Ncore

A $ 0?
Reshaping
Lagrangians

1 N None

2 N None

3 N

4 N

5 Y

6 Y

7 Y None

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
2.4 Spin partitioning details

In contrast to DDEC6 charge partitioning that requires
a Lagrangian series, DDEC spin partitioning requires mini-
mizing only a single Lagrangian. The DDEC spin partitioning
Lagrangian was introduced by Manz and Sholl19 and is
summarized in Section S2.1 of ESI.† Fig. S1 of ESI† shows
a ow diagram for spin partitioning. Why does spin parti-
tioning use a single iterative Lagrangian while charge parti-
tioning uses a Lagrangian series? The most fundamental
difference is that the reference ion state must be updated
during the early stages of charge partitioning, while the
proportional spin partition (which acts as a reference state
for spin partitioning) does not require any updates. Convex-
ness is guaranteed only if the reference ion updating in
DDEC6 charge partitioning is performed in a xed nite
sequence (i.e., Lagrangian series) rather than iterated to self-
consistency. Also, convexness is guaranteed only if the
weighted spherical averaging in DDEC6 charge partitioning
is performed in a xed nite sequence (i.e., Lagrangian
series) rather than iterated to self-consistency. Simple
spherical averaging can be incorporated into a convex
Lagrangian iterated to self-consistency. DDEC spin parti-
tioning incorporates a simple spherical averaging of ~mA(~rA).

The major features of DDEC spin partitioning are summarized
in Table 3.19 First, the assigned {~mA(~rA)} sum to ~m(~r) at each position
~r. This also ensures the sum of ASMs will always yield back the total
spin magnetic moment of the unit cell. Second, both proportional
Table 3 Features of DDEC spin partitioning

Feature

Constraint ensures ~mð~rÞ ¼ P
‘;A

~mAð~rAÞ
Proportional spin partitioning included in optimization functional
Spherical averaging included in optimization functional
Constraint ensures mA(~rA) # rA(~rA)
Spin magnetization density represented as a vector
Cutoff radius
Convex optimization functional with exponentially fast convergence

This journal is © The Royal Society of Chemistry 2018
spin partitioning and spherical averaging are included in the spin
partitioning optimization functional to ensure chemically reason-
able results and to accurately reproduce the magnetic eld due to
spin,~Bspin(~r), around the material.19 Constraining the optimization
functional so the atomic spin magnetization density is less than or
equal to the atomic electron density ensures the resulting ASMswill
be chemically meaningful.19 Spin magnetization density is repre-
sented as a vector tomake the approach applicable to both collinear
and non-collinearmagnetism.19 In the case of collinearmagnetism,
efficiency ismaximized by only computing and storing the non-zero
component.19 Similar to the NACs calculation, ASMs are computed
using a cutoff radius to ensure linear scaling computational cost
with increasing system size.19

A predictably fast and unique convergence is achieved by
using a provably convex19 optimization functional with expo-
nentially fast17 convergence. As explained in Section S3.2.4 of
our previous article,17 the max_ASM_change for spin cycle j + 1
is approximately

fspin ¼ 1�
ffiffiffiffiffiffiffiffi
1=2

p
¼ 0:29 (12)

times the maximum error in the ASM components for spin cycle
j:

max_ASM_change|j+1 z fspinmax_ASM_change|j (13)

Therefore, the number of spin_cycles required to achieve
convergence of all ASM components to within spin_conver-
gence_tolerance follows the equation17

spin_cycles#
lnðspin_convergence_toleranceÞ � ln

�
D0

ASM

�
ln
�
fspin

�
þ1þ 1: (14)

where

D0
ASM ¼ max

fAg

�
max

����M0
A;x �M

converged
A;x

���; ���M0
A;y �M

converged
A;y

���;
���M0

A;z �M
converged
A;z

����� (15)

quanties the maximum ASM component error on the rst spin
cycle (i.e., proportional spin partitioning) compared to the nal
converged result. The next to last spin cycle is the rst spin cycle
for which max_ASM_change < spin_convergence_tolerance. A
nal spin cycle is required to conrm convergence has reached
this level. The rst +1 in eqn (14) accounts for the rst spin
cycle, and the second +1 in eqn (14) accounts for the last spin
Purpose

Spin magnetization divided exactly amongst atoms

Helps to ensure chemically reasonable results
ASMs more accurately reproduce ~Bspin(~r) around material
Ensures chemical feasibility
Works for collinear and non-collinear magnetism
Linear scaling computational cost
Predictably unique and rapid convergence

RSC Adv., 2018, 8, 2678–2707 | 2685

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
cycle. We used spin_convergence_tolerance ¼ 5 � 10�5. Nearly
always, D0

ASM < 1 electrons error in each ASM component due to
proportional spin partitioning (i.e., rst spin cycle). Accord-
ingly, eqn (14) yields spin_cycles # 10. In our experience, spin
partitioning nearly always completes in fewer than ten spin
cycles. As demonstrated in Section 4.4 below, our computa-
tional results for collinear and non-collinear magnetic systems
precisely followed eqn (12)–(14).
2.5 Bond order analysis

A new method to compute bond orders was developed by Manz16

and is implemented in the DDEC6method. Key advantages of this
method are summarized in Table 4. First, the method uses
appropriate cutoffs to achieve an efficient linearly scaling
computational cost.16 Second, exchange interactions are formu-
lated in vector form to achieve a unied description of no
magnetism, collinear magnetism, and non-collinear magnetism.16

To save memory and computational time, only the non-zero
exchange components are computed and stored.16 Theoretical
lower (1�) and upper (2�) bounds on the bond-order-to-contact-
exchange ratio improve the method's accuracy.16 Bond orders are
computed as functionals of {(r(~r),~m(~r))} to ensure approximately
consistent results across various exchange–correlation theories,
basis sets, and SZ values of a spin multiplet.16

There are several specic features of DDEC6 partitioning
that make it exceptionally well-suited for computing bond
orders. First, the DDEC {~mA(~rA)} are simultaneously optimized
to resemble proportional spin partitioning and {~mavg

A (rA)}; this is
crucial to satisfy the conuence of atomic exchange propensi-
ties.16 Second, the DDEC6 charge partitions are simultaneously
optimized such that: (a) rA(~rA) resembles ravgA (rA), (b) NA

resembles the number of electrons in the region of space
dominated by atom A, (c) wA(rA) and rA(~rA) resemble a reference
ion of the same element in a similar (but not necessarily iden-
tical) charge state, and (d) the buried tails of atoms decay
exponentially with increasing rA at a rate that is neither too fast
nor too slow. Property (a) is also needed to satisfy the conuence
of atomic exchange propensities.16 Properties (b), (c), and (d)
help to ensure chemically correct atoms-in-materials
partitioning.

The rst step in bond order analysis is to set the number of
exchange components. Spin unpolarized calculations have only
one exchange component: the electron density r(~r). Collinear
Table 4 Features of DDEC6 bond order analysis

Feature

Computes atom–atom overlaps to determine which bond orders are
negligible and uses cutoff radii
Exchange interactions formulated in vector form with allocation of exact
number of exchange components
Lower and upper bounds on the bond order
Bond orders are computed as functionals of {(r(~r),~m(~r))}

Based on DDEC6 ravgA (rA) and ~mavg
A (rA)

2686 | RSC Adv., 2018, 8, 2678–2707
magnetism calculations have two exchange components: the
electron density and the spin density. Non-collinear magnetism
calculations have four exchange components: the electron density
and x, y, z components of the spin magnetization density vector,
~m(~r). The arrays and computational routines in bond order anal-
ysis are designed such that exactly the corresponding number of
exchange components are allocated in memory and computed.

The second step is to prepare the density grids for bond
order analysis. Bond order computation requires including the
exchange of all electrons (i.e., both core and valence electrons)
to accurately model the exchange hole. During the charge and
spin partitioning, we used a valence-core separation scheme
that includes occupancy corrections to yield accurate integra-
tions.17,18,28 Since electron exchange is non-linear in r(~r), it is not
straightforward to perform a valence-core separation for the
exchange hole. Therefore, it is necessary to modify the total
electron density grid to directly include the occupancy correc-
tion for each atom so that direct integration of the atom-
partitioned total electron density grid yields the correct
DDEC6 atomic populations without requiring a core-valence
separation. Since the occupancy correction corrects for the
integration error in the valence electron cusp near each atomic
nucleus, we restricted the total electron density grid correction
to those pixels near each atomic nucleus (i.e., a 5 � 5 � 5 block
of grid points around each nucleus). This process does not
change the DDEC6 NACs.

With some differences, this numerical correction of the total
electron density grid is analogous to the core electron grid
correction described in the ESI of our previous publication.17

Table 5 summarizes the differences between the core electron
grid correction and the total electron density grid correction. A key
difference is that {wcore

A (rA)} is updated during core electron grid
correction, while {wDDEC6

A (rA)} is not altered in any way during the
total electron density grid correction. Section S4 of ESI† contains
a detailed description and ow diagram (Fig. S2†) of the total
electron density grid correction. The implementation we used
performed core electron grid correction during the core electron
partitioning and total electron density grid correction at the
beginning of bond order analysis. The corrected total electron
density, r(~r), and corrected spherical average densities, {ravgA (rA)},
are then used throughout the bond order analysis to achieve
results.

Fig. 4 shows a ow diagram for bond order analysis. As
stated above, the rst step sets the number of exchange
Purpose

Linearly scaling computational cost

Applies to systems with no magnetism,
collinear magnetism, and non-collinear magnetism
Improves accuracy
Ensures consistent results across
various exchange–correlation theories and basis sets
Satises conuence of atomic exchange propensities

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Table 5 Comparison of correction schemes for core electron density
grid and total electron density grid

Aspect
Core electron grid
correction

Total electron grid
correction

Electron density Core Total (core + valence)
When correction formed During core

partitioning
At start of bond
order analysis

Target atomic populations Ncore
A NDDEC6

A

Grid points corrected All 5 � 5 � 5 block around
each nucleus

Atomic
weighting factors

wcore
A (rA) wDDEC6

A (rA)

Fig. 4 Flow diagram of DDEC6 bond order analysis.

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
components, and the second step prepares the density grids.
The third step computes the local atomic exchange vectors. The
fourth step identies all translation symmetry unique atom
pairs that could have a bond order equal to or greater than the
bond order print threshold (e.g., 0.001). These are listed in the
bond pair matrix. The h step computes various integrated
terms for each atom pair in the bond pair matrix: contact
exchanges, overlap populations, etc. The sixth step uses these
integrated terms to compute the bond orders and SBOs. The
seventh step prints these to output les.

We parallelized the second, third, and h steps over grid
points. Alternatively, one could parallelize these steps over
atoms (for quantities involving individual atoms) or atom pairs
(for quantities involving atom pairs).

Additional bond order analysis details are summarized in
Section S3 of ESI.† Eqn (S80)† quanties the spin polarization of
each bond by computing a chemical descriptor that varies from
0 (completely paired electrons) to 1 (all electrons of same spin)
with intermediate values indicating a partially spin-polarized
bond. Equations for computing bond order (eqn (S81)†), SBO
(eqn (S87)†), contact exchange (eqn (S75)†), SCE (eqn (S79)†),
and overlap population (eqn (S76)†) are given. Theory behind
these equations was presented in an earlier article.16
3. Parallelization strategy and
memory management
3.1 Overall strategy

Today's high performance computing clusters are usually
comprised of several compute nodes in which each node has
several processors sharing a random access memory (RAM).
Processors on a single compute node are cache coherent, while
processors from different compute nodes are not cache
coherent. Two main schemes are available to parallelize
a program: (a) using shared memory (for example, open multi-
processing (OpenMP)) to parallelize across cache-coherent
processors on a single compute node and (b) using distrib-
uted memory (for example, message passing interface (MPI)) to
parallelize across non-cache-coherent processors (e.g., those
from different compute nodes). The limitation of using just
OpenMP as a parallelization scheme is that the program is
restricted to parallelization over processors and memory
This journal is © The Royal Society of Chemistry 2018
available on a single shared-memory node.39,40 MPI has the
advantage that it can make use of memory and processors from
multiple compute nodes.

The parallelization scheme chosen for CHARGEMOL was
shared memory because it is easy to create a shared memory
program if the serial program already exists. The only thing
needed is to add OpenMP directives that will be processed by
the compiler.39,40 Another advantage is that the user does not
have to compile extra libraries to get the OpenMP paralleliza-
tion. If the compiler does not support OpenMP, the program
will be compiled in the serial mode and the parallel directives
will be ignored. Examples of OpenMP directives are shown in
Fig. 5. We used two programming guides that explain OpenMP
directives.39,40

We used OpenMP because it is easier to program, but many
of our suggestions for efficient parallelization would also apply
to strategy (b) utilizing a MPI. TheMPI parallelization strategy is
oen preferred by QC codes that perform calculations across
multiple compute nodes. Lee et al.41 incorporated DDEC3 into
ONETEP42 and used MPI to parallelize it across nodes to study
large biomolecules and other materials containing thousands
of atoms. The distributed memory strategy of Lee et al.41 could
RSC Adv., 2018, 8, 2678–2707 | 2687

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 5 Example OpenMP directives that create threads and divide the
work. The loop is parallelized over j.

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
be used to parallelize the DDEC6 method across multiple
compute nodes. It is also possible to combine MPI and OpenMP
such that parallelization within a node is handled by OpenMP
and parallelization across nodes is handled by MPI,43 but we
have not yet implemented any of the DDEC methods using
hybrid MPI-OpenMP parallelism.

In order to create an efficient shared memory parallel
program, the elements listed in Fig. 6 had to be achieved: (a) set
big matrices as shared variables, (b) order the loop indices, (c)
parallelize over grid points, bond pairs (i.e., pairs of atoms
having non-negligible bond order), or atoms depending on the
best option for a particular case, (d) minimize the number of
CRITICAL directives, and (e) minimize thread creation.

The big matrix elements run over all grid points in the unit
cell. That is, they have a form my_array(a, b, c) where the value
of (a, b, c) determines a particular grid point in the unit cell. In
Fortran, the rst index is the fast changing index that references
adjacent memory values. Thus, my_array(1, 200, 300) is stored
adjacent to my_array(2, 200, 300).

Obviously, computational loops that run over the largest
number of elements are the most important to parallelize.
These include: (a) loops over grid points in the unit cell, (b)
loops over atoms and spatial positions {~rA}, (c) loops over bond
pairs and relevant spatial positions for each bond pair, and (d)
for Gaussian basis set coefficients inputs there are loops that
run over relevant spatial positions for each non-negligible pair
of Gaussian basis functions. Loops of type (a) are parallelized
over grid points. Loops of type (b) can be parallelized over either
(bi) atoms or (bii) spatial positions for an atom. Here, we have
Fig. 6 Elements for achieving an efficient shared memory parallelization

2688 | RSC Adv., 2018, 8, 2678–2707
used strategy (bii), while an earlier paper on MPI parallelization
of the DDEC3 method used strategy (bi).41 Loops of type (c) can
be parallelized either over (ci) relevant spatial positions for
a bond pair or (cii) bond pairs. We tested both of these strate-
gies and found they both work well. Results in this paper are for
strategy (ci). For loops of type (d), we parallelized over blocks of
non-negligible Gaussian basis function pairs, but this requires
using ATOMIC directives when writing to the electron and spin
density grids (as described in the ESI of one of our previous
articles,17 pairs of Gaussian basis functions within a single
block share the same exponent and center, while different
blocks have different exponents or different centers).
3.2 Minimizing memory requirements

Each variable in a parallel region of a code must be declared as
shared or private.39,40 Shared variables have a common value
accessed by all the threads, while private variables have
a different value for each thread. Private variables will not retain
their value when the threads are destroyed. Temporary vari-
ables, index numbers, loop iteration indices, and other local
variables were set as private. The big arrays in the program (i.e.,
the ones that run over grid points) take up the most memory.
Big arrays are treated as shared variables. Whenever a big array
was no longer needed, it was deallocated to free up some
memory.

The big arrays are listed in Fig. S3.† Each row stands for a big
array and each column stands for amodule in the program.Not all
of the program'smodules are listed, only the ones where big arrays
are allocated or deallocated. The modules are listed in order with
earlier modules listed to the le. Fig. S3† shows in which module
each big array is allocated and deallocated. The continuous
colored line represents when each big array exists. Green blocks
are used by all of the systems. Yellow blocks are used only by
systems with collinear magnetism. Red blocks are used only by
systems with non-collinear magnetism. The height of a cell is
proportional to the amount of memory the big array requires. For
example, if the cell has a height of 3 small cells the big array
requires triple the memory of a small cell, because that big array
stores information for three vector components at each grid point.

Fig. 7 shows the number of values that must be stored for
each grid point at the same time when the program is in certain
modules. Earlier modules are listed towards the top and later
modules towards the bottom. Some modules will be skipped
depending on the calculation type: (i) only one of the read density
of the DDEC6 method.

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
grids or prepare density grids from basis set coefficients modules
will be run depending on whether the density grids are read from
les or computed from the basis set coefficients, respectively, and
(ii) the spin moments iterator will be run only if the system is
magnetic. The total memory required to complete the DDEC
analysis is proportional to the length of the cells in Fig. 7. As
mentioned above, big matrices that will not be used anymore
were deallocated. If the system is non-magnetic, the largest
memory requirement will be in the valence iterator or reading of
input density grids. Non-magnetic systems use only green cells
and the highest memory requires storing 6 values over the grid
points (i.e., nlarge¼ 6). For magnetic materials, the computation
of ASMs requires the largest memory. For systems with collinear
magnetism, the required memory is proportional to the height of
green and yellow cells, and there is a maximum storage
requirement of 8 values over the grid points (i.e., nlarge ¼ 8). For
systems with non-collinear magnetism, the required memory is
proportional to the height of green, yellow, and red cells, and
there is a maximum storage requirement of 20 values over the
grid points (i.e., nlarge ¼ 20). Overall, DDEC6 analysis required
the same amount of memory as DDEC3 analysis.

Based on Fig. 7, the total RAM (in megabytes) required to run
the program is estimated using the formulas

nlarge_mem ¼ nlarge� npoints� 8

106
(16)

total_memory_required ¼ nlarge_mem

þmin

�
350;

2� npoints� 8

106
þ 5� natoms

	
(17)

Here, npoints stands for the total number of grid points,
natoms is the number of atoms in the unit cell, and nlarge is the
number of values that must be simultaneously stored for each
grid point. The megabytes required to store the big arrays is
nlarge_mem, where the factor of 8 in eqn (16) accounts for the 8
bytes required to store a double precision real number. To this
must be added a small amount to account for miscellaneous
memory requirements. In eqn (17), the minimum function adds
an amount up to 350 megabytes to estimate miscellaneous
Fig. 7 Illustration of the maximum amount of big arrays that exist at the
bars indicate the additional memory for systems with collinear magnetism
green, yellow, and red bars.

This journal is © The Royal Society of Chemistry 2018
memory requirements or an amount proportional to the
number of atoms and grid points. This formula for miscella-
neous memory requirements was reverse engineered from
results of our various tests and is not precise.

Table 6 summarizes theminimummemory requirements for
running a diverse set of materials on serial and 8 parallel
processors. This test set spanned from one atom per unit cell
(i.e., Ni metal fcc crystal) to 733 atoms per unit cell (i.e., B-DNA
decamer). These systems spanned different kinds of magne-
tism: (a) non-magnetic (i.e., B-DNA decamer and ozone singlet),
(b) collinear magnetism (i.e., Mn12-acetate single molecule
magnet, Ni metal, and ozone triplet), and (c) non-collinear
magnetism (i.e., Fe4O12N4C40H52 single molecule magnet).
Different types of basis sets (i.e., planewave and Gaussian) are
contained in this test set. As demonstrated by the results in
Table 6, the total RAM requirements were nearly identical for
serial and 8 parallel processors. This indicates an efficient
memory management for which adding parallel processors
does not signicantly change the total memory requirements.
The last column in Table 6 lists the total memory requirements
predicted by eqn (17). This prediction contains a margin of
safety such that the predicted total memory should be large
enough to accommodate the calculation.
3.3 Minimizing false sharing

Cache is an intermediary between the processors and main
memory.40 Cache stores temporary information so the processor
does not have to travel back and forth to the main memory.
However, cache is small and sometimes it cannot store all the
information the program needs. In order to maximize cache
efficiency, the number of fetches to main memory the processor
makes should be kept to a minimum. In modern computer
architectures, there are usually multiple layers of cache.

The precise size of a cache line depends on the imple-
mentation; 64 bytes is common, which means a cache line can
store eight double precision (64 bit) real numbers. To maximize
performance, a single thread of the parallel program should use
all of these numbers before requiring the next fetch. Therefore,
same time per module. The green bars are for all systems. The yellow
. The memory required for non-collinear magnetism is the sum of the

RSC Adv., 2018, 8, 2678–2707 | 2689

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Table 6 Minimum memory required (in MB) to complete the DDEC6 calculation

System Atoms in unit cell Basis set type Magnetism Serial 8 processors Predicted (eqn (17))

B-DNA decamer 733 Planewave None 4500 4500 4650
Fe4O12N4C40H52 SMM 112 Planewave Non-collinear 2500 2500 2910
Mn12-acetate SMM 148 Planewave Collinear 480 490 828
Mn12-acetate SMM 148 Gaussian Collinear 2900 2900 3294
Ni metal 1 Planewave Collinear 5 6 8
Ozone singlet (CCSD) 3 Gaussian None 250 260 362
Ozone triplet (CCSD) 3 Gaussian Collinear 340 340 449

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
a single thread should consecutively run over adjacent values of
the inner index, and threads should be parallelized over one of
the outer indices. This means that a should be the inner (fast)
loop and c should be the outer (slow) loop when assigning
values to my_array(a, b, c) using a Fortran Do loop. The correct
organization of the loops in the program is represented in
Fig. 8. When using the correct loop order, each thread will
update several consecutive array values before requiring a fetch
from main memory (or outer cache) to inner cache of the next
several array values. Since the different parallel threads are
working on array elements corresponding to different cache
lines, each thread will not slow down the performance of the
other threads.

Using an incorrect loop order can cause false sharing.40 In
false sharing, parallel threads write to different matrix elements
on the same cache line. Because the rst processor invalidates
the cache line upon writing, the second processor must wait for
the cache line to reload before writing its value, and the third
processor must wait for another reload before it writes. This
makes each cache line load several times instead of once. This
also means that the next array element required by the rst
processor may not yet be in inner cache, which would require
a new fetch from main memory (or outer cache) to inner cache
for each newly required array element. The result is a lot of
wasted motions.

We tested the efficiency of parallelizing over the number of
atoms on two different types of arrays. Let us dene one array
where the rst index (corresponding to the radial shell) varies
Fig. 8 Example of the arrangement of loop and matrix indices to maxim

2690 | RSC Adv., 2018, 8, 2678–2707
according to the distance from the atomic nucleus and a second
index depends on the atom number: my_array_1(radial_shell,
atom_number). Let us dene another array that only depends
on the atom number: my_array_2(atom_number). In the rst
case, loops were set so radial_shell was the fast index. We tested
the efficiency of parallelizing loops in the DDEC6_valence_it-
erator module that iterate over the number of atoms. The
system tested was an ice crystal with 6144 atoms. We used 16
processors. Because of false sharing where different processors
try to update adjacent array values in the same cache line,
a parallel loop containing variables of the type my_array_2 took
almost three times longer when parallelized than in the serial
mode. In contrast, the parallelization efficiency was 98% when
the loop containing variables of the type my_array_1 was par-
allelized over atom_number. False sharing is minimized for this
kind of loop because radial_shell is the fast index and different
processors work on different values of the slow index (atom_-
number). This is why we parallelized over the number of atoms
some loops that contained variables of the type my_array_1 but
not my_array_2.

To test cache performance, we generated a code with the
correct (“fast code”) and incorrect (“slow code”) order of loop
indices when writing updated values to the big arrays.
Computational tests for the Mn12-acetate single molecule
magnet using the PBE/planewave densities are shown in Table
7. Three runs were performed and the average and standard
deviation are reported. The slow code took longer to run than
the fast code. On 8 and 16 processors, spin partitioning took
ize cache efficiency. This structure was used throughout the program.

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
almost twice as long using the slow code compared to the fast
code, and overall DDEC6 analysis took�50% longer. Examining
the code, spin partitioning exhibited the worst slowdown,
because it has the highest fraction of loops over grid points that
write updated values to the big arrays. It is amazing that the
overall performance of the slow code was not worse. This clearly
indicates the Xeon multi-processor unit we used is highly effi-
cient. In particular, it has out-of-order execution that allows
commands to be executed out of order to mitigate effects of
waiting for data to be fetched from main memory to cache.
While the processor is waiting for data to be fetched, it will
execute another command for which the input data is available.
3.4 Reductions

Several OpenMP directives are designed to prevent racing
conditions.39,40 A racing condition occurs if two processors try to
write to the same memory location at the same time. The
ATOMIC directive was set when the value of a variable had to be
updated in main memory by different processors. The
REDUCTION directive was used to parallelize sums, subtrac-
tions, nding a maximum or a minimum value, etc. The
CRITICAL directive allows only one thread at a time to per-
form a set of code operations. ATOMIC, CRITICAL, and
REDUCTION were tested to see which one was the least
computationally expensive. REDUCTION was the least time
consuming. These directives were kept to a minimum to avoid
overhead cost. To avoid memory requirements increasing with
the number of parallel processors, no REDUCTION was used
over big arrays.

Fig. 9 shows two different placements of the REDUCTION
clause. We tested the parallelization efficiency on 16 processors.
The system studied was an ice crystal with 6144 atoms in the
unit cell. When REDUCTION was set like the top panel of Fig. 9,
403 seconds were needed to complete the parallel section. In
this case, the REDUCTION clause is performed natoms times.
Because an array containing a dimension of length natoms
must be reduced over natoms times, the time to complete the
loop scales poorly as the number of atoms increases. When
REDUCTION was set as in the bottom panel of Fig. 9, only 79
seconds were needed to complete the parallel section. In this
case, the REDUCTION clause is performed just once. Therefore,
whenever possible, we set the REDUCTION clauses as in the
bottom panel of Fig. 9.
Table 7 Ratio of slow to fast code times required to perform DDEC6
molecule magnet (PBE/planewave)

Number of processors

Serial 1 2

Setting up density grids 1.070 � 0.022 1.069 � 0.005 1.
Core electron partitioning 1.327 � 0.106 1.215 � 0.025 1.
Charge partitioning 1.218 � 0.052 1.181 � 0.002 1.
Spin partitioning 1.395 � 0.032 1.361 � 0.009 1.
Bond order analysis 1.144 � 0.042 1.101 � 0.007 1.
Total time 1.267 � 0.056 1.211 � 0.008 1.

This journal is © The Royal Society of Chemistry 2018
3.5 Scheduling and thread binding

The OpenMP clause SCHEDULE was specied to control the way
the work was distributed among the threads.39,40 The keyword
STATIC was used when the processors would perform the same
number of operations in each loop iteration, ensuring balance of
work among the processors. DYNAMIC was set when the number
of operations per loop iteration could vary. In DYNAMIC sched-
uling, the next loop iteration is assigned to the rst free processor.
DYNAMIC scheduling achieves better load balancing but has
higher overhead than STATIC scheduling.39,40

A thread in OpenMP can be bound to a particular processor
or it can be allowed to switch between processors. This is
controlled through the environmental variable OMP_-
PROC_BIND. When this variable is set to TRUE, a thread does
not switch between processors. If the variable is set to FALSE,
a thread can switch between processors. We ran tests on the
Mn12-acetate SMM system to test whether the value of OMP_-
PROC_BIND affects the calculation time. Table 8 shows the time
per atom to perform the DDEC6 calculation. Setting OMP_-
PROC_BIND to TRUE or FALSE gave nearly identical times to
complete the calculation. Since the difference was not signi-
cant and since not specifying a value for OMP_PROC_BIND
gives similar results, we did not specify the OMP_PROC_BIND
variable for any of the other calculations in this work.

As a further test of thread congurations, we also tested two
threads per processor (i.e., 32 OpenMP threads on 16 processors).
As shown in Table 8, most of the modules were completed in the
same amount of time as using one thread per processor (i.e., 16
OpenMP threads on 16 processors), except for the bond order
analysis where the time for two threads per processor increased
the required times �20% compared to using one thread per
processor. For this reason, we used one thread per processor for
all of the other calculations in this work.

Because of the almost negligibly small standard deviations in
the computational times, except where otherwise specied
throughout the remainder of this article we performed only one
run for each computational test rather than running replicates.
4. Results and discussion
4.1 Overview of systems studied

Table 9 summarizes systems studied in the computational
timing and memory tests. These systems were chosen to
calculations. These tests were performed on the Mn12-acetate single

4 8 16

105 � 0.025 1.103 � 0.008 1.095 � 0.002 1.065 � 0.013
388 � 0.012 1.536 � 0.001 1.758 � 0.028 1.801 � 0.008
292 � 0.007 1.306 � 0.101 1.558 � 0.090 1.552 � 0.087
513 � 0.014 1.658 � 0.012 1.900 � 0.014 1.988 � 0.020
101 � 0.007 1.157 � 0.012 1.206 � 0.009 1.177 � 0.084
211 � 0.008 1.392 � 0.019 1.540 � 0.020 1.519 � 0.036

RSC Adv., 2018, 8, 2678–2707 | 2691

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 9 Example of parallelization codes using (top) inefficient placement of REDUCTION statement and (bottom) efficient placement of
REDUCTION statement. The bottom configuration is preferred because the REDUCTION clause is executed just once, while the top code
executes the REDUCTION clause natoms times.

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
represent a wide range of materials (column 1), number of
atoms per unit cell (column 2), exchange–correlation (XC)
theories (column 3), and basis sets (column 4). VASP24–27 and
Table 8 Time per atom (seconds) to perform DDEC6 calculations on Mn
The averages and standard deviations for three runs are shown. The ca
calculations with 16 threads used one thread per processor. We exam
specifying the variable's value

OMP_PROC_BIND

16 threads on 16 processors

True False

Setting up density grids 0.1381 � 0.0003 0.1389 �
Core electron partitioning 0.1946 � 0.0001 0.1943 �
Charge partitioning 0.1368 � 0.0053 0.1388 �
Spin partitioning 0.1828 � 0.0014 0.1816 �
Bond order analysis 0.1906 � 0.0003 0.1908 �
Total time 0.8705 � 0.0040 0.8719 �

2692 | RSC Adv., 2018, 8, 2678–2707
GAUSSIAN 09 (ref. 44) soware packages were used to generate
electron distributions for the planewave and Gaussian basis set
calculations, respectively. These materials were selected to
12-acetate SMM (PBE/planewave) using different thread configurations.
lculations with 32 threads used two threads per processor, while the
ined the effects of setting OMP_PROC_BIND to true, false, and not

32 threads not speciedNot specied

0.0008 0.1459 � 0.0065 0.1376 � 0.0002
0.0000 0.1945 � 0.0000 0.1873 � 0.0002
0.0101 0.1364 � 0.0057 0.1359 � 0.0040
0.0004 0.1858 � 0.0035 0.1905 � 0.0010
0.0010 0.2129 � 0.0374 0.2505 � 0.0028
0.0096 0.9033 � 0.0292 0.9345 � 0.0059

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
contain a wide range of different chemical elements. The h
column in Table 9 lists references describing details of electron
density calculations and geometry. Because required computa-
tional times and total memory requirements depend strongly
on the total number of grid points, the last three columns in
Table 9 list the total number of grid points, the unit cell volume,
and the volume per grid point. For non-periodic materials, the
unit cell volume was le blank. VASP calculations of molecules
or clusters (e.g., water dimer, X@C60 endohedral complexes,
Fe4O12N4C40H52 non-collinear single molecule magnet (SMM))
used a vacuum space between atoms in neighboring images.
For all GAUSSIAN 09 calculations (e.g., Mn12-acetate SMM with
LANL2DZ basis set and all ozone systems), “density ¼ current
output¼wfx”was specied to prompt GAUSSIAN 09 to print the
wfx le that is subsequently analyzed by the CHARGEMOL
program.

All VASP calculations in Table 9 used a PREC ¼ Accurate
integration grid. The water dimer used a 750 eV planewave
cutoff energy with k-points dened by eqn (22). All other VASP
calculations in Table 9 used a 400 eV planewave cutoff energy
with k-points dened by eqn (21). Of particular interest, the
largest ice supercell calculation contained 8748 atoms, 857 778
planewaves in the VASP calculation, and >250 million grid
points. This shows the DDEC6method can be efficiently applied
to large-scale quantum chemistry calculations.

All computational timing tests reported in this paper were
performed on the Stampede 1 cluster at the Texas Advanced
Computing Center (TACC). Each cache coherent compute node
contained two Xeon E5 (Sandy Bridge) units with
Table 9 Summary of the systems studied for computational timing and

System Number atoms XC theory Basis set Reference

Ni metal 1 PBE Planewave This work
Ice crystals 12 PBE Planewave 16

96
324
768
1500
2592
4116
6144
8748

B-DNA decamer 733 PBE Planewave 18
Mn12-acetate SMM 148 PBE Planewave 18

PBE LANL2DZ
Fe4O12N4C40H52

non-collinear SMM
112 PW91 Planewave 19

Ozone singletb 3 B3LYPa 6-311+G*b 28 and 29
Ozone cationc 3 B3LYPb 6-311+G*c 28 and 29
Ozone tripletb 3 B3LYPa 6-311+G*b 28 and 29
X@C60

d 61 PBE Planewave 17
Water dimer 6 PBE Planewave This work

a Several additional sets of grid points were also considered for this m
performed for the same molecule with CASSCF/AUG-cc-pVTZ, CCSD/AU
with identical total number of grid points and volume per grid point. c

AUG-cc-pVTZ and PW91/6-311+G* levels of theory with identical tota
complexes with X ¼ Am+1, Cs, Eu+1, Li, N, and Xe.

This journal is © The Royal Society of Chemistry 2018
hyperthreading disabled. Each E5 unit had eight processing
cores. In this article, we use the term “processor” to denote an
individual processing core. Thus, a job run on “8 processors”
means a job run on 8 processing cores.
4.2 A single atom in the unit cell: Ni metal solid

The system geometry is Ni face-centered cubic (fcc) crystal
structure optimized with PBE functional using a 400 eV plane-
wave cutoff energy. As shown in Fig. 10, efficient parallel DDEC6
analysis was achieved even when the unit cell contained only
one atom. This is remarkable, because it shows efficient parallel
computation is achieved even for the smallest systems. Three
trials were performed to compute error bars (standard devia-
tions) for the DDEC6 computational times and parallelization
efficiencies. Core electron partitioning was the most time-
consuming part of the computation. Although the error bars
were generally small, the spin partitioning calculation times
when using the serial code uctuated by a couple of seconds,
while the spin partitioning calculation times uctuated less
than 0.1 seconds on 16 processors. Such small time uctuations
have the largest impact on parallelization efficiency when the
system is small.

Ni metal solid has a metallic bond. Ni atoms exchange
electrons not only with the nearest neighbors, but also with the
next nearest neighbors. The DDEC6 Ni–Ni bond orders for the
Ni atom with one of its images were 0.281 for a nearest
neighbor, 0.020 for a second nearest neighbor, 0.002 for a third
nearest neighbor, and negligible for farther removed atoms.
The DDEC6 SBO for the Ni atom in Ni metal was 3.54. Ni metal
memory tests

Total number of
grid points

Unit cell volume
(bohr3)

Volume per grid
point (bohr3)

32 768 73.4 0.0022
345 600 874.2 0.0025
2 764 800 6993.7 0.0025
9 331 200a 23 603.9 0.0025a

22 118 400 55 949.9 0.0025
43 200 000 109277.1 0.0025
74 649 600 188830.9 0.0025
118 540 800 299856.4 0.0025
176 947 200 447599.1 0.0025
251 942 400 637304.2 0.0025
89 579 520 221407.5 0.0025
7 464 960 20 700.0 0.0028
46 006 272 0.0027
16 003 008 46 286.8 0.0029

5 419 008 0.0027
5 419 008 0.0027
5 419 008 0.0027
21 952 000 53 986.7 0.0025
34 012 224 39 356.3 0.0012

aterial as described in Sections 4.5 and 4.6. b Additional calculations
G-cc-pVTZ, PW91/6-311+G*, and SAC-CI/AUG-cc-pVTZ levels of theory
Additional calculations performed for the same molecule with CCSD/
l number of grid points and volume per grid point. d Endohedral

RSC Adv., 2018, 8, 2678–2707 | 2693

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
has ferromagnetic atomic spin distribution with a bulk
magnetic moment of 0.6 per Ni atom.45 The DDEC6 Ni ASM was
0.645, which is in good agreement with this experimental value.
4.3 A large biomolecule: B-DNA decamer (CCATTAATGG)2

The B-DNA decamer (CCATTAATGG)2 contains 733 atoms per
unit cell. As described in our earlier publication, the geometry
of this system contains the experimental diffraction structure46

plus Na+ ions added to balance the charge.18 As shown in
Fig. 11, the serial code required �9 seconds per atom to
complete DDEC6 analysis. Bond order analysis was the most
time consuming part of the calculation. The OpenMP code ran
slightly faster on one processor than the serial (non-OpenMP)
code. Parallelization efficiencies on 2, 4, 8, and 16 processors
were >60%. This example shows efficient parallel DDEC6
computation for a large biomolecule.

Table 10 compares DDEC6 NACs to CHARMM27 and AMBER
4.1 forceeld NACs. We grouped the atoms by what they were
bonded to. For example, C–C2H represents a C atom bonded to
two C atoms and one H atom. The DDEC6 NACs per group have
a small standard deviation (s # 0.10). With a few exceptions,
DDEC6 NACs were similar to the CHARMM and AMBER NACs.
The N–C2 and N–CH2 DDEC6 NACs are less negative than
CHARMM and AMBER. The C–C2H and P DDEC6 NACs are
between CHARMM and AMBER. The C–C2H2 DDEC6 NAC
(�0.34) is slightly more negative than CHARMM (�0.18) and
AMBER (�0.09).

Table 10 also lists the DDEC6 SBO for each atom type. The
standard deviation was #0.10. SBOs for C atom types ranging
from 3.84 to 4.25, which agrees with a chemically expected value
of �4. The H atoms have DDEC6 SBOs of nearly 1, which is the
chemically expected value. SBOs for N atoms were between 3
and 4. The O SBO is expected to be �2; however, we obtained O
Fig. 10 Parallelization timing and efficiency results for Ni bulk metal (1
atom per unit cell, PBE/planewave method). Three trials were per-
formed to compute error bars for the computational times and par-
allelization efficiencies.

2694 | RSC Adv., 2018, 8, 2678–2707
SBOs slightly higher than this. The SBOs for O can be slightly
larger than 2 due to hydrogen bonding, lone pair (i.e., Lewis
acid–base) interactions, or extra p-bonding interactions with
adjacent atoms. DNA contains a phosphate group in which the
hypercoordinate P atom has nearly six bonds (SBO ¼ 5.81).
Thus, the heuristic Lewis octet rule cannot describe DNA. The
mostly ionic Na atom had SBO ¼ 0.32 due to a small amount of
electron exchange with the nearest O and P atoms.

Fig. 12 shows the individual bond orders. The alternating
double and single bonds in aromatic rings is merely a drawing
convention to indicate the degree of unsaturation of the ring,
and it does not imply that these bond orders are actually
alternating double and single bonds. Rather, all bond orders in
these aromatic rings are intermediate between single and
double bonds. Two P–O bonds in the PO4 group are shorter and
of higher order than the other two. The DNA double helix
structure was rst introduced by Watson and Crick in 1953,
being held together by hydrogen bonds.49 There are three
hydrogen bonds connecting guanine to cytosine and two con-
necting adenine to thymine.50,51 These are displayed in Fig. 12 as
dashed red lines and had bond orders of 0.05 to 0.12.

4.4 Single molecule magnets with collinear and non-
collinear magnetism

We now discuss computational performance for two single
molecule magnets that demonstrate versatility of our compu-
tational approach. Fig. 13 displays results for the Mn12-acetate
single molecule magnet using both planewave (le panel) and
Gaussian (middle panel) type basis sets. Mn12-acetate has been
one of the most widely studied single molecule magnets.52–54 As
shown in Fig. 13, computational times weremuch higher for the
Gaussian basis set coefficients input than for the density grid
input derived from the planewave calculation. The program
must explicitly compute the electron and spin density grids
from the Gaussian basis set coefficients input. Parallelization
Fig. 11 Parallelization timing and efficiency results for the B-DNA
decamer (733 atoms per unit cell, PBE/planewave method). The lines
mark the unit cell boundaries.

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
efficiencies on 2, 4, 8, and 16 parallel processors were >73% for
the density grid input and >53% for the Gaussian basis set
coefficients input. The slightly lower parallelization efficiency
for the Gaussian basis set coefficients input is partially due to
the presence of some ATOMIC memory write statements (in
which only one parallel processor can write a result to memory
at a time) in the module that computes the electron and spin
density grids.

Fig. 14 illustrates the computed NACs and bond orders for
the Mn12-acetate single molecule magnet (LANL2DZ basis set).
The Mn atoms had NACs of 1.31–1.42 and were bonded to
adjacent oxygen atoms via bond orders 0.28–0.56. The C–O
bond orders in the acetate groups were 1.29–1.41. A water
molecule coordinates to eachMn type 3 atom via an oxygen lone
pair (i.e., Lewis acid–base interaction) having a bond order of
0.32. TheMn type 1 atoms form aMn4O4 cuboidal core in which
the Mn–O bond order along each edge of the cuboid is 0.45. The
CH3 group in each acetate carries an almost neutral net charge,
while the CO2 group in each acetate carries a net charge of �
�0.4 e. DDEC6 SBOs for each chemical element were 2.66–3.16
(Mn), 1.88–2.18 (O), 3.83–3.86 (C), and 0.81–0.98 (H). Mn SBOs
were 3.16 (type 1), 2.74 (type 2), and 2.66 (type 3). Results for the
planewave basis set were similar. Specically, the root-mean-
Table 10 DDEC6 NACs and SBOs with standard deviation and maxim
CHARMM27 and AMBER 4.1 NACs shown for comparison

Group

DDEC6 NACs DDEC6 S

PBE/planewave PBE/plan

NAC s Max Min SBO

C–C2H �0.35 0.01 �0.34 �0.36 4.12
C–C2H2 �0.34 0.01 �0.32 �0.37 3.93
C–C2HO 0.14 0.05 0.20 0.07 3.84
C–C2N �0.07 0.02 �0.05 �0.09 4.11
C–C3 �0.06 0.01 �0.04 �0.06 4.04
C–CH2O 0.01 0.01 0.03 �0.01 3.93
C–CH3 �0.39 0.00 �0.38 �0.39 4.03
C–CHN 0.04 0.05 0.10 �0.01 4.01
C–CHON 0.27 0.01 0.29 0.24 3.87
C–CN2 0.35 0.10 0.50 0.24 4.16
C–CON 0.49 0.01 0.51 0.47 4.18
C–HN2 0.16 0.08 0.26 0.07 4.07
C–N3 0.60 0.01 0.60 0.59 4.18
C–ON2 0.59 0.01 0.62 0.57 4.25
H–C 0.09 0.05 0.34 0.03 1.00
H–N 0.31 0.02 0.35 0.27 0.96
N–C2 �0.42 0.07 �0.30 �0.55 3.30
N–C2H �0.44 0.01 �0.43 �0.45 3.58
N–C3 �0.13 0.03 �0.10 �0.17 3.66
N–CH2 �0.60 0.02 �0.56 �0.64 3.37
O–C �0.51 0.02 �0.48 �0.54 2.12
O–C2 �0.28 0.01 �0.26 �0.29 2.36
O–CH �0.49 0.04 �0.45 �0.53 2.30
O–CP �0.44 0.02 �0.41 �0.46 2.52
O–P �0.89 0.02 �0.83 �0.93 2.10
P–O4 1.38 0.03 1.46 1.35 5.81
Na 0.90 0.03 0.92 0.77 0.32

a CHARMM27 NACs from ref. 47. b AMBER 4.1 RESP HF/6-31G* NACs fro

This journal is © The Royal Society of Chemistry 2018
squared difference between the PBE/planewave and PBE/
LANL2DZ calculated DDEC6 results were 0.035 (NACs), 0.067
(ASMs), and 0.110 (SBOs) for this material. The maximum
absolute differences were 0.098 (NACs), 0.252 (ASMs), and 0.222
(SBOs). This basis set stability occurs because DDEC6 analysis
formally depends on the electron and spin distributions irre-
spective of the basis set employed.17

DDEC6 analysis of planewave non-collinear magnetism is
also computationally efficient. As shown in Fig. 15,�12 seconds
per atom on a single processor were required to complete
DDEC6 analysis for the Fe4O12N4C40H52 non-collinear single
molecule magnet. Parallelization efficiencies were >57% on 2, 4,
8, and 16 parallel processors. The computed NACs and bond
orders are displayed in Fig. 16.

As described by eqn (12)–(14), the number of iterations (aka
‘spin cycles’) required to converge the DDEC ASMs to within
a chosen spin_convergence_tolerance is extremely predicable.
As an example, Fig. 17 plots the natural logarithm of the
magnitude of the largest change in ASM component between
successive iterations (aka ‘max_ASM_change’) for the Mn12-
acetate (PBE/planewave and PBE/LANL2DZ) and Fe4O12N4C40-
H52 single molecule magnets. These were chosen as examples
to illustrate the rate of ASM convergence is independent of the
um and minimum values for the B-DNA decamer (CCATTAATGG)2.

BOs

CHARMM27a

AMBER 4.1

ewave RESP HF/6-31G*b

s Max Min NAC NAC

0.02 4.15 4.10 �0.13 �0.52
0.03 4.02 3.87 �0.18 �0.09
0.02 3.88 3.78 0.15 0.12
0.03 4.15 4.05 0.14 0.14
0.03 4.08 4.01 �0.15 0.00
0.04 4.06 3.88 �0.08 �0.01
0.03 4.09 4.00 �0.11 �0.23
0.06 4.09 3.92 0.11 �0.12
0.02 3.92 3.83 0.16 0.03
0.04 4.22 4.07 0.45 0.52
0.04 4.25 4.13 0.52 0.51
0.04 4.17 4.01 0.36 0.27
0.02 4.22 4.17 0.75 0.74
0.02 4.28 4.21 0.52 0.68
0.03 1.11 0.93 0.10 0.13
0.04 1.01 0.89 0.34 0.41
0.03 3.36 3.24 �0.70 �0.69
0.05 3.65 3.51 �0.40 �0.68
0.04 3.73 3.57 �0.14 �0.01
0.04 3.44 3.30 �0.73 �0.94
0.04 2.23 2.06 �0.47 �0.59
0.03 2.41 2.32 �0.50 �0.37
0.10 2.41 2.18 �0.66 �0.59
0.05 2.62 2.42 �0.57 �0.51
0.06 2.30 1.99 �0.78 �0.78
0.06 5.88 5.59 1.50 1.17
0.02 0.40 0.29 1.00 1.00

m ref. 48.

RSC Adv., 2018, 8, 2678–2707 | 2695

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 12 Computed DDEC6 bond orders in the guanine-cytosine and adenine-thymine base pairs. The hydrogen bonds are shown as dotted red
lines.

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
basis sets and the same for collinear and non-collinear
magnetism. Each of these data sets was tted to a straight
line using linear regression. For each line the value of fspin can
be calculated as exp(slope). The fspin values of 0.29, 0.27, and
0.29 obtained by tting these three datasets is in nearly perfect
agreement with the value theoretically predicted in eqn (12).
Results for all of the magnetic systems we examined to date
conrm that the rate of ASM convergence follows eqn (12)–(14)
2696 | RSC Adv., 2018, 8, 2678–2707
independently of the magnetic material and basis sets. In all
cases, ASM convergence was computationally inexpensive and
required few iterations.
4.5 Linear scaling computational cost: ice supercells

In this example, we study how the computational time and
required memory scale when increasing the unit cell size and
number of parallel processors. We analyzed ice crystals with 12,
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 13 Parallelization timing and efficiency results for the Mn12-acetate single molecule magnet (148 atoms per unit cell) that exhibits collinear
magnetism. Left: PBE/planewave results. Middle: PBE/LANL2DZ results. Right: Chemical structure with Mn atoms colored by type: Mn type 1
(blue), Mn type 2 (red), Mn type 3 (yellow). The PBE/LANL2DZ computed ASMs were �2.56 (Mn type 1), 3.63 (Mn type 2), 3.57 (Mn type 3), and
#0.077 in magnitude on all other atoms.18

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
96, 324, 768, 1500, 2592, 4116, 6144, and 8748 atoms in the unit
cell. As described in another paper, these structures were con-
structed as n � n � n times the primitive cell containing 4 water
molecules (12 atoms), for n¼ 1 to 9.16 These unit cells were used as
inputs for VASP calculations to compute the electron distribu-
tions.16 As shown in Fig. 18, the total memory required is almost
independent of the number of processors and scales linearly with
Fig. 14 Computed bond orders (blue) and NACs (black) for the Mn12-ace
densities. The atoms are colored by element: Mn type 1 (blue), Mn type 2
(i.e., the full chemical structure) were included the DDEC6 calculation, bu
fragments shown here were chosen so that together they include all of

This journal is © The Royal Society of Chemistry 2018
increasing system size. This indicates an efficient memory
management. Fig. 18 also shows the serial and parallel compu-
tational times scaled linearly with increasing system size and
decreased with increasing number of parallel processors. Table 11
shows how the data from Fig. 18 ts to lines of the form y¼ axb for
the time and memory needed to complete the CHARGEMOL
program. The tted exponents b are 0.8723 to 1.0389, which
tate single molecule magnet using the PBE/LANL2DZ electron and spin
(green), Mn type 3 (yellow), O (red), C (grey), H (pink). All of the atoms
t for display purposes only a portion of the atoms are shown here. The
the symmetry unique atoms and bonds.

RSC Adv., 2018, 8, 2678–2707 | 2697

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 16 Computed bond orders (blue) and NACs (black) for the Fe4-
O12N4C40H52 single molecule magnet that exhibits non-collinear
magnetism. The atoms are colored by element: Fe (yellow), O (red), C
(grey), N (blue), H (pink). The distorted cuboidal Fe4O4 core is shown

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
indicates almost perfect linear scaling. For 8748 atoms, paralleli-
zation efficiencies were >71% on 2, 4, 8, and 16 processors.

The DDEC6 ONACs ranged from�0.84 to�0.87. The DDEC6
bond orders for H and O in the same molecule were 0.79–0.80,
while the bond order between O and the nearest H from another
molecule (i.e., hydrogen bond) was 0.08–0.09.

We tested the DDEC6 time and memory requirements to
analyze VASP electron density distributions with 12 700 800
(196 � 216 � 300), 35 123 200 (280 � 280 � 448), and 8 128 120
(360 � 384 � 588) grid points in the unit cell containing 324
atoms. Fig. 19 shows that time and memory scale linearly with
respect to the number of grid points. Changing the number of k-
points or planewave cutoff energy in VASP without changing the
number of grid points does not change the DDEC6 analysis time
and memory requirements. As shown in Fig. 19, using a plane-
wave cutoff energy of 400 or 750 eV gives the same DDEC6
analysis time and memory requirements. We also tested the
time required to complete DDEC6 analysis for 12 700 800 grid
points with the number of k-points dened by eqn (21) and (22).
Changing the number of k-points did not change the DDEC6
analysis time.
together with one adsorbed methanol molecule and one of the
organic ligands. The dashed blue line illustrates interaction between
the methanol lone pair and the adjacent Fe atom (i.e., Lewis acid–base
interaction). The other three adsorbed methanol molecules and three
organic ligands were included in the calculation but are not shown
here for display purposes.
4.6 Numerical precision: effects of grid spacing, k-point
mesh, and planewave cutoff energy

For periodic materials, calculations using a planewave basis set
have several advantages.26,55 First, the basis set functions are
orthonormal, which greatly simplies matrix element calcula-
tions. Second, the planewave coefficients are related to a Fourier
transform.26,55 Fast Fourier transform algorithms allow func-
tions to be quickly transformed between real space and recip-
rocal space. Because the standard fast Fourier transform
algorithm requires uniformly spaced sampling points,
uniformly spaced integration grids are the natural choice for
planewave QC calculations. Integrations and other mathemat-
ical manipulations can thus be performed in whichever space
(real or reciprocal) is most convenient.26 Third, the
Fig. 15 Parallelization timing and efficiency results for the Fe4O12N4C40

method) that exhibits non-collinear magnetism. Left: Chemical struct
Chemistry 2017). The atoms and spin magnetization vectors are colore
exhibited DDEC6 ASM magnitudes of 2.33, and the ASM magnitudes w
efficiency results.

2698 | RSC Adv., 2018, 8, 2678–2707
wavefunction for a periodic material can be described in terms
of Bloch waves, where each one-particle Bloch wave has the
form in eqn (18).55

jn

�
~k;~r

	
¼ e

~k$~r
ffiffiffiffi
�1

p
un

�
~k;~r

	
(18)

Because the cell periodic functions {un(~k,~r)} have the same
periodicity as the unit cell, they can be expanded in terms of
H52 single molecule magnet (112 atoms per unit cell, PW91/planewave
ure reproduced with permission of ref. 16 (© The Royal Society of
d by: Fe (orange), O (red), N (blue), C (gray), H (white). The Fe atoms
ere negligible on the other atoms.18 Right: Parallelization timing and

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 17 The convergence rate of spin partitioning is highly predictable.
A plot of the logarithm of the max_ASM_change versus iteration
number is linear with a slope equal to
lnð fspinÞ ¼ lnð1� ffiffiffiffiffiffiffiffi

1=2
p Þ ¼ lnð0:29Þ ¼ �1:23 for both collinear and

non-collinear magnetism.

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
a basis set of planewaves commensurate with the unit cell.55

Fourth, a planewave basis set systematically approaches
completeness as the cutoff energy is raised.26 All commensurate
planewaves with kinetic energy below this cutoff energy are
included in the basis set.26 (Basis sets comprised of psinc func-
tions combine the advantages of planewaves and localized basis
functions,42,56,57 but psinc basis functions were not used here.)

The k-points {~k} sample the primitive cell in reciprocal space
(aka ‘the rst Brillouin zone’).55 More k-points corresponds to
a ner integration mesh in reciprocal space. A sufficiently large
number of k-points is needed to achieve accurate integrations.58

Because the volumes of the real-space and reciprocal-space unit
cells are inversely proportional,55 a constant volume per inte-
gration point in reciprocal space is dened by keeping the total
number of k-points

(19)

times the real-space unit cell volume constant. This in turn
corresponds to
Fig. 18 DDEC6 results for ice crystal using 12, 96, 324, 768, 1500, 2592
These results show both the computational time and memory required s
scales linearly with the number of atoms and decreases with increasing n
of the number of processors. The predicted memory required is from e

This journal is © The Royal Society of Chemistry 2018
(20)

where is the number of k-points along the ith lattice vector.
For a ‘ne’ k-point mesh spacing, we set the constant on the
right-side of eqn (20) to $16 Å:

(21)

For a ‘very ne’ k-point mesh spacing, we set

(22)

In this article, Monkhorst–Pack58 k-point grids were used in all
cases involving multiple k-points (i.e.,), and the Gamma
point (i.e.,~k ¼ 0) was used for single k-point (i.e.,) grids.

The projector augmented wave (PAW) method is an all-
electron frozen core method that combines high computa-
tional efficiency with high accuracy.59,60 The VASP PAW poten-
tials use a high-level relativistic calculation for the frozen-core
electrons and a scalar-relativistic approximation for the
valence electrons.26 The PAWmethod applies a projection to the
all-electron density to produce a pseudized valence density that
varies more slowly near the atomic nucleus than the true
valence density.59,60 This pseudized valence density can thus be
accurately computed using a planewave basis with a moderate
energy cutoff.59,60Once the accurate pseudized valence density is
computed, the inverse projectors can be applied to recover the
true valence density.59,60 The planewave cutoff energy required
to achieve well-converged results depends on the ‘hardness’ of
the PAW potentials used. A ‘harder’ PAW potential has a smaller
effective core radius, which makes it more accurately transfer-
able between materials but at the expense of requiring a higher
energy cutoff to achieve well-converged results.60

The VASP POTCAR le (which contains the PAW potential)
lists the ‘ENMAX’ value; this is the planewave cutoff energy
beyond which results are considered well-converged. A reason-
able choice is to set the planewave cutoff energy (ENCUT) to the
greater of 400 eV and the POTCAR-listed ENMAX value:
, 4116, 6144, and 8748 atoms per unit cell (PBE/planewave method).
cale linearly with increasing system size. Left: The computational time
umber of processors. Right: Total RAM required is almost independent
qn (17).

RSC Adv., 2018, 8, 2678–2707 | 2699

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Table 11 Data from Fig. 18 fitted to lines of the form y ¼ axb for the time and memory required to complete the CHARGEMOL calculation. The
last column lists the parallelization efficiency on the ice crystal containing 8748 atoms per unit cell

Processors

Time Memorya

Parallelization
efficiencya b R2 a b R2

Serial 5.8719 1.0313 1.0000 4.0197 0.8750 0.9976 100.0%
1 5.5777 1.0268 1.0000 4.1063 0.8723 0.9973 109.3%
2 2.9132 1.0294 1.0000 N.A. N.A. N.A. 102.5%
4 1.4975 1.0319 1.0000 N.A. N.A. N.A. 96.5%
8 0.7803 1.0363 0.9999 4.1063 0.8723 0.9973 87.6%
16 0.4578 1.0389 1.0000 N.A. N.A. N.A. 71.2%

a The memory tests were performed on the Comet cluster at the San Diego Supercomputing Center (SDSC) with the serial code and parallel code
using one and eight cores.

Fig. 19 Time and memory required to complete DDEC6 analysis for a 324 atom ice unit cell with 12 700 800, 35 123 200, and 81 285 120 grid
points. These calculations were run in serial mode on a single processor. Both the computational time and memory required scaled linearly with
increasing number of grid points and were independent of the planewave cutoff energy.

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
ENCUT ¼ max(400 eV, ENMAX) (23)

For a given chemical element, VASP sometimes includes both
‘normal’ and ‘harder’ POTCARs. For each chemical element, the
‘normal’ POTCAR has ENMAX # 400 eV, but some of the
‘harder’ POTCARs have ENMAX values > 400 eV.

The number of real-space grid points required to accurately
sample the electron and spin density distributions is directly
given by the Sampling Theorem. According to the Sampling
Theorem that was developed by several pioneers of signal
transmission, a continuous signal can be transmitted and
recovered without aliasing (also called wrap-around or folding)
errors if it is sampled at least as frequently as twice the highest
frequency component of the signal.61–63 This minimum
sampling rate is called the Nyquist rate.61,62,64 Thus, the orbitals
will be accurately represented on a real-space grid without ali-
asing errors if the real-space grid contains twice as many grid
points along each lattice direction as basis set planewave
components along the corresponding lattice direction. Because
the electron and spin density distributions are generated from
summed second-order orbital products, their maximum
frequency component is twice that of the orbitals. Therefore,
the minimum sampling rate along each lattice direction for
electron and spin density distributions is twice that of the
orbitals.
2700 | RSC Adv., 2018, 8, 2678–2707
The PREC tag in VASP denes the number of real-space grid
points.65 PREC ¼ Accurate chooses real-space grids of sufficient
resolution to avoid aliasing errors when representing the
orbitals and electron and spin distributions.65 As required by
the Sampling Theorem, PREC ¼ Accurate uses a grid-for-
orbitals with at least twice as many grid points as basis set
planewave components along each lattice direction.65 PREC ¼
Accurate also uses a grid-for-densities (for electron and spin
magnetization densities and potentials) that contains twice as
many grid points along each lattice direction as the grid-for-
orbitals.65 A PREC ¼ Accurate or ner resolution real-space grid
is thus highly recommended. For a planewave cutoff energy of
400 eV, a PREC ¼ Accurate grid corresponds to an electron
density grid spacing of �0.14 bohr and a volume per grid point
of �0.0027 bohr3.

We studied numerical precision of DDEC6 analysis when
changing the number of k-points, the cutoff energy, and the grid
spacing in VASP. We performed tests for the 324 atom ice unit
cell, whose unit cell is 3 � 3 � 3 times the primitive cell. The
primitive cell has eight H atoms and four O atoms. Each atom of
the primitive cell was dened as an atom type, resulting in 12
atom types. The parameter sets used to test the DDEC6 analysis
precision are dened in Table 12. Fine and very ne k-point
meshes were used. We also varied the number of electron
density grid points (196 � 216 � 300, 320 � 320 � 500, and 360
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
� 384 � 588) and planewave energy cutoff (400 and 750 eV).
(The grid for orbitals contained half as many points along each
lattice direction). For sets one to four, the number of grid points
along at least one of the lattice vectors was not evenly divisible
by 3. Because the unit cell is 3 � 3 � 3 times the primitive cell,
this caused some atoms of the same type to have different
positions relative to their nearest grid point. This situation was
chosen to maximize the MAD dened below. The grid for sets 5
and 6 had number of grid points along each lattice vector evenly
divisible by 3, which resulted in all atoms of the same type
having identical positions relative to their nearest grid point.
This situation was chosen to minimize the MAD dened below.

For each atom in the material, we computed the following
DDEC6 atomistic descriptors: (a) NAC, (b) atomic dipole magni-
tude, (c) largest eigenvalue of the atomic traceless quadrupole
matrix, (d) SBO, (e) density tail exponent, and (f) r-cubedmoment.
For each set in Table 12, we computed the mean absolute devi-
ation (MAD) for each atomistic descriptor () using eqn (24).

(24)

There are n_per_type ¼ 27 atoms of each type, n_types ¼ 12
different atom types, and natoms ¼ (n_per_type) (n_types) ¼
324 atoms in the unit cell. stands for the atomistic
descriptor value for the ith atom of a particular atom type j.

is the average value of the atomistic descriptor across the
same atom type j for a single QC calculation (i.e., set_1, set_2,
set_3, set_4, set_5, or set_6). The high_precision DDEC6 results
(i.e., set_6) were used as reference to measure the mean
Table 12 Computational tests performed on ice supercell having 324 ato
k-points were varied. The mean absolute deviation (MAD) quantifies the
mean absolute deviation of mean (MADM) quantifies the difference in av
high precision set 6

Descriptor Set 1 Set 2

Computational settings
Cutoff energy (eV) 750 400
Volume per grid point (bohr3) 0.001858 0.001858
k-points

Mean absolute deviation (MAD)
NAC 0.000394 0.000377
Atomic dipole magnitude 0.000191 0.000181
Max quadrupole eigenvalue 0.000120 0.000122
SBO 0.000516 0.000455
Density tail exponent 0.000236 0.000242
r-cubed moment 0.004803 0.004343

Mean absolute deviation of mean (MADM)
NAC 0.000348 0.001670
Atomic dipole magnitude 0.000114 0.000486
Max quadrupole eigenvalue 0.000083 0.000286
SBO 0.000502 0.001851
Density tail exponent 0.000359 0.000783
r-cubed moment 0.003289 0.005633

This journal is © The Royal Society of Chemistry 2018
absolute deviation of mean (MADM) of the DDEC6 atomistic
descriptors. The MADM was computed for each atomistic
descriptor as in eqn (25).

(25)

The MAD quanties how much uncertainty there is in the
computed value of a descriptor due to non-systematic errors.
The MADM quanties how much uncertainty there is in the
computed value of a descriptor due to systematic errors. The
sum of the MAD and MADM quanties how much total uncer-
tainty (non-systematic + systematic error) there is in computing
the descriptor's value.

The average absolute value of each of the six descriptors was
0.571 for NAC, 0.039 for atomic dipole magnitude, 0.037 for max
quadrupole eigenvalue, 1.28 for SBO, 1.77 for density tail
exponent, and 10.67 for r-cubed moment. The MAD was 3.2–4.5
(NAC), 2.3–3.6 (atomic dipole magnitude), 2.5–4.1 (max quad-
rupole eigenvalue), 3.4–4.7 (SBO), 3.6–5.5 (density tail expo-
nent), and 3.3–4.9 (r-cubed moment) orders of magnitude
smaller than these values. Thus, the MAD was relatively small in
all cases. As shown in Table 12, the MAD was smallest for sets 5
and 6, which used the smallest volume per grid point. The
intermediate grid spacing (set 4) had intermediate MAD values.
The k-points and planewave cutoff energy had negligible effect
on the MAD values. This shows the MAD values were most
strongly inuenced by the integration grid spacing.

As shown in Table 12, the MADM was also small in all cases.
The planewave cutoff energy had the largest effect on the
ms. The planewave cutoff energy, volume per grid point, and number of
difference between symmetry equivalent atoms in the same set. The
erage value for symmetry equivalent atoms in the set compared to the

Set 3 Set 4 Set 5 Set 6

750 750 400 750
0.001858 0.000461 0.000290 0.000290

0.000394 0.000299 0.000020 0.000019
0.000191 0.000144 0.000010 0.000011
0.000120 0.000071 0.000003 0.000003
0.000516 0.000431 0.000027 0.000025
0.000236 0.000212 0.000005 0.000005
0.004806 0.003095 0.000128 0.000120

0.000348 0.000071 0.001912 0
0.000114 0.000065 0.000527 0
0.000083 0.000049 0.000286 0
0.000502 0.000133 0.001897 0
0.000358 0.000173 0.000351 0
0.003284 0.002817 0.007167 0

RSC Adv., 2018, 8, 2678–2707 | 2701

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
MADM. The higher cutoff energy (750 eV) had substantially
smaller MADM than the lower cutoff energy (400 eV). The k-
points had negligible effect on the MADM. At high cutoff
energy, decreasing the volume per grid point decreased the
MADM.

From the tests performed, we conclude that VASP calcula-
tions using a PREC ¼ Accurate integration grid, a planewave
cutoff energy of 400 eV, and k-points dened by will produce
an accurate electron density distribution suitable for DDEC6
analysis. If a ‘hard’ PAW potential is used, the energy cutoff
should be increased to at least ENMAX. Finer integration grid
spacing, higher planewave cutoff energy, and more k-points can
be used if extremely high precision is desired.
4.7 Different levels of theory applied to the ozone molecule

The DDEC6 method works with any QC method capable of
providing accurate electron and spin density distributions.18 To
be accurate, the QC method should include electron exchange–
correlation effects.66 Examples of appropriate QC methods
include: DFT methods, DFT + U,67 DFT + dispersion correc-
tions,68 coupled cluster methods (e.g., CCSD and SAC-CI),
conguration interaction methods (e.g., CISD, CAS-SCF, etc.).

As an example, illustrating diverse exchange–correlation
theories, Fig. 20 shows computational timings for ozone singlet,
cation doublet, and triplet states computed using B3LYP,69,70

PW91,71 CCSD,72 CAS-SCF,73 and SAC-CI74,75 methods. SZ ¼ 1
(B3LYP, PW91, and CCSD) and SZ ¼ 0 (CAS-SCF and SAC-CI) for
the computed triplet state.28 Because the DDEC6 calculation
had to compute the density grids from the Gaussian basis set
coefficients, the computational times per atom were larger for
the larger basis set (i.e., AUG-cc-pVTZ76) than for the smaller
basis set (i.e., 6-311+G*). Computing the density grids from the
Gaussian basis set coefficients was the most computationally
demanding part of the calculation. Times for the serial calcu-
lations ranged from �11 to �94 seconds per atom. Paralleliza-
tion efficiencies for 16 processors were $�50%.

The cation spin doublet calculation at the CCSD/AUG-cc-
pVTZ level of theory took the longest time for DDEC6 analysis.
To verify this was statistically signicant, we performed three
serial runs each for the cation doublet and neutral triplet at
CCSD/AUG-cc-pVTZ. The average and error bars (i.e., standard
deviation) for each part of the calculation are shown in Fig. 20
but are too small to be visible. These results showed that indeed
Fig. 20 Parallelization timing and efficiency results for ozone singlet, +
CASSCF/AUG-cc-pVTZ, CCSD/AUG-cc-pVTZ, PW91/6-311+G*, and SA
compared.

2702 | RSC Adv., 2018, 8, 2678–2707
it took a statistically signicantly longer time for setting up the
density grids for the cation doublet than for the neutral triplet at
CCSD/AUG-cc-pVTZ.

Fig. 21 plots the logarithm of the DDEC6 bond orders versus
bond lengths. Interestingly, B3LYP gave an asymmetric geom-
etry having different distances between the middle and two
outer O atoms for the triplet state, while CCSD yielded an
asymmetric geometry for the cation doublet state. The other
geometries were symmetric. The data was t to four straight
lines: (a) singlet and triplet O–O–O bond, (b) cation doublet
O–O–O bond, (c) singlet and triplet O–O–O bond, and (d) cation
doublet O–O–O bond. The squared correlation coefficients
>0.93 conrm an approximate exponential decay in DDEC6
bond order with increasing bond length for a given bond. The
DDEC6 bond orders depended primarily on the bond lengths
and electronic state, without an explicit dependence on the
exchange–correlation theory. The choice of exchange–correla-
tion theory affects the computed DDEC6 bond orders only to the
extent the electron and spin distributions are affected.

Pauling suggested a D(bond length) to D(ln(bond order))
ratio of�0.3, but noted this value should depend on the kind of
atom and type of bond.77 Our results agree with this. For the
four tted lines, we obtained ratios of (a) 1/2.6179 ¼ 0.38, (b) 1/
2.2389 ¼ 0.45, (c) 1/4.0322 ¼ 0.25, and (d) 1/4.9127 ¼ 0.20.

Table 13 summarizes the NACs for the O atoms in ozone as
a range across the levels of theory studied. The maximum
variation in NAC was 0.107 for the two terminal atoms of the +1
doublet when using CCSD. As explained above, CCSD yielded an
asymmetric geometry for the cation doublet; this caused the two
terminal O atoms to be distinct with different NACs. The second
largest variation was the central O atom in an ozone triplet
where NACs go from 0.134 (CASSCF) to 0.236 (CCSD). Overall,
these results show the DDEC6 method can be successfully
applied to different exchange–correlation theories.
4.8 Diverse chemical elements in endohedral C60 complexes

A series of endohedral complexes was studied: [Am@C60]
+1,

Cs@C60, [Eu@C60]
+1, Li@C60, N@C60, and Xe@C60. These

contain light and heavy elements frommain group, lanthanide,
and actinide elements. Previously, we demonstrated chemical
consistency between the computed DDEC6 NACs and ASMs for
these endohedral complexes.17 Fig. 22 compares results for
serial computation to 16 parallel processors. The parallelization
1 doublet, and triplet at different levels of theory: B3LYP/6-311+G*,
C-CI/AUG-cc-pVTZ. Serial and 16 parallel processors calculations are

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Table 13 Summary of NACs for ozone singlet, +1 doublet, and triplet.
The range in each cell is the minimum and the maximum value across
the different levels of theory for the underlined atoms

Spin state

NACs

O–O–O O–O–O

Singlet �0.179–�0.195 0.357–0.389
+1 doublet 0.231–0.338 0.431–0.515
Triplet �0.118–�0.067 0.134–0.236

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
efficiencies were >44%. For serial computation, the spin parti-
tioning was usually the most time consuming part of the
calculation. For parallel computation, setting up the density
grids (which includes input le reading) was the most time
consuming part of the calculation. This is because the input le
reading was not parallelized. These results demonstrate effi-
cient parallel performance of the DDEC6 method across a wide
range of chemical elements.

To study the effect of constraint (11), the Cs@C60 was
analyzed using both 46 and 54 simulated Cs frozen core elec-
trons. When using 46 Cs frozen core electrons, the constraint
(11) applied but was not binding, thus kCs ¼ 0. When using 54
simulated Cs frozen core electrons, constraint (11) bound, thus
kCs > 0. Because {kA} updating was required when using 54
simulated Cs frozen core electrons, the charge partitioning part
of the computation was more expensive than for the 46 Cs
frozen core electron calculation. In general, the time for core
electron partitioning can be affected by the number of core
electrons. The times required for all other parts of the calcula-
tion were not affected. This demonstrates changes in the
number of frozen core electrons have only a small effect on the
overall computational time and parallelization efficiency.

Table 14 shows the endohedral bond orders and NACs. Only
Am+1, Cs, Eu+1, and Li form an ionic bond between the central
atom and the carbon cage, while N and Xe show weak charge
transfer. The largest X–C bond order was small (0.178 for Am+1).
There was an overall trend of increasing SBO with increasing
atomic number. This demonstrates that heavier atoms have
a more diffuse electron cloud that overlaps more with the
electron cloud of the C60 cage.

Every C atom in the C60 molecule is equivalent, being
shared by two C6 rings and one C5 ring. There are two types of
bonds: (a) a bond shared between a C6 and a C5 ring, and (b)
a bond shared between two C6 rings. The C NAC in N@C60 was
nearly zero (�0.007 to 0.003). The bond order type (a) in
N@C60 was 1.12, while the bond order type (b) was 1.30. The
SBO for each C atom in N@C60 was 3.93. This SBO is in line
with the chemical expectation that each C atom shares four
valence electrons.
Fig. 21 Logarithm of bond order versus bond length for ozone molecule
triplet (blue) spin states. Shapes of data points indicate the exchange–corr
Bond between the two outer atoms.

This journal is © The Royal Society of Chemistry 2018
4.9 The effects of large vacuum space in unit cell: water
dimer

Some linearly scaling computational methods scale propor-
tional to the number of atoms in the unit cell while others scale
proportional to volume (or number of grid points) in the unit
cell. To investigate this issue, we constructed a large periodic
unit cell containing a water dimer surrounded by a large region
of vacuum space. We used the equilibrium CCSD(T)/CBS water
dimer geometry reported by Rezac et al.78 The water molecule
has a nearly tetrahedral geometry, with hydrogens occupying
two sites and lone pairs occupying the other two sites. A
hydrogen bond keeps the dimer together connecting one
hydrogen in one molecule to one oxygen lone pair in the other
molecule.

As shown in Fig. 23, the DDEC6 serial computation required
�20 seconds per atom. The OpenMP code ran slightly faster on
one processor than the serial (non-OpenMP) code. The paral-
lelization efficiency dropped substantially when increasing the
number of parallel processors. For 16 processors, the paralle-
lization efficiency dropped to �11%. As shown in Fig. 23, this
was because the time required for setting up density grids did
not decrease signicantly with increasing number of proces-
sors. This was because the input le reading was not paral-
lelized. When the time required for setting up the density grids
is omitted, parallelization efficiencies increase to $ �60%.
Although one could potentially improve the parallelization
efficiency of setting up the density grids by parallelizing the
input le reading, we chose not to do so at this time to keep the
. Colors of data points indicate singlet (red), cation doublet (green), or
elation theory. Left: Bonds between themiddle and outer atoms. Right:

RSC Adv., 2018, 8, 2678–2707 | 2703

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
code simpler. Parallel input le readingmay pose challenges for
code portability as well as exhibit different performance on
different types of operating systems or machine architectures.
Also, errors during input le reading caused by incorrect input
les will be easier to analyze and x if the input le reading is
performed sequentially rather than in parallel.

During core electron partitioning, charge partitioning,
spin partitioning (for magnetic materials), and bond order
analysis, the main loops run over atoms (or atom pairs in
bond order analysis) and grid points within the cutoff radius
of each atom. In this particular type of loop, the vacuum
space far away from all atoms contributes to the memory
required to store the big array, but not signicantly to the
computational time. Consequently, the time per atom
required to perform core electron partitioning, charge par-
titioning, and bond order analysis was similar for the water
dimer surrounded by a large vacuum space as for the other
materials described above irrespective of whether they con-
tained a vacuum region. This indicates that aer setting up
the density grids, the computational time scales proportional
to the number of atoms (for a given grid spacing) rather than
proportional to volume of the unit cell.

DDEC6 NACs and bond orders are also shown in Fig. 23. The
H–O distances are 2.01 Å for the hydrogen bond and 0.96 Å for
the covalent bond. The computed DDEC6 H–O bond orders are
0.84–0.90 for the covalent bond and 0.10 for the hydrogen bond.
The computed NACs indicate that the H–O covalent bond in
water is polar–covalent with electrons drawn from the hydrogen
towards the oxygen. As discussed in our previous publication,
the DDEC6 H2O NACs are in good agreement with common 3-
site water models typically used in classical atomistic molecular
Fig. 22 Parallelization timing and efficiency results for: [Am@C60]
+1, Cs@C

electrons), [Eu@C60]
+1, Li@C60, N@C60, and Xe@C60. These calculations

Table 14 Summary of DDEC6 bond orders and NACs for the different X

X

Li N Xe

X SBO 0.250 0.294 1.1
Largest X–C bond order 0.040 0.006 0.0
X NAC 0.903 0.142 0.3

a Using 46 frozen Cs core electrons. b Using 54 simulated frozen Cs core

2704 | RSC Adv., 2018, 8, 2678–2707
dynamics and Monte Carlo simulations.18 (The similarity of
DDEC NACs for bulk water to common three-site water models
was rst pointed out by Lee et al.35)
5. Conclusions

In this article, we studied efficient parallel computation of
NACs, ASMs, and bond orders using the DDEC6 method. These
calculations also included rapid computation of atomic dipoles
and quadrupoles, electron cloud parameters, and r-cubed
moments. r-Cubed moments are useful for computing atomic
polarizabilities and dispersion coefficients.81,82 The DDEC6
method has the advantage of being the most accurate and
broadly applicable APAM developed to date that partitions the
material into overlapping atoms.17,18 We presented an efficient
parallel implementation of the DDEC6 method using an
OpenMP parallelized Fortran code. We described several
components necessary to achieve an efficiently running code:
(a) ow diagrams and modular design, (b) memory manage-
ment, (c) computational cutoffs to achieve linear scaling, (d)
efficient assignment of the computational work to parallel
threads, (e) integration strategy, and (f) lookup tables to speed
function evaluations.

We summarized theory, ow diagrams, main features, and
computational parameters for DDEC6 analysis. A key advantage
is that the DDEC6 method has predictably rapid and robust
convergence. DDEC6 charge partitioning requires seven charge
partitioning steps, and this corresponds to solving a series of 14
Lagrangians in order. DDEC6 ASMs are computed using the
DDEC spin partitioning algorithm of Manz and Sholl19 applied
using the DDEC6 {rA(~rA)}.17,18 These ASMs converge
60 (46 frozen Cs core electrons), Cs@C60 (54 simulated frozen Cs core
have 61 atoms per unit cell and were computed using PBE/planewave.

@C60 endohedral complexes studied

Csa Csb Eu+1 Am+1

73 1.009 1.074 1.489 2.010
20 0.018 0.019 0.124 0.178
16 1.057 1.000 1.368 1.318

electrons.

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Fig. 23 Left: NACs (black) and bond orders (blue) of water dimer. Right: Parallelization timing and efficiency results for water dimer (6 atoms per
unit cell, PBE/planewave method). The solid blue line is the overall parallelization efficiency. The dashed blue line is the parallelization efficiency
excluding setting up density grids.

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
exponentially fast. The DDEC6 bond orders are computed using
the recently developed comprehensive bond order equation.16 A
key advantage of this method is that it can be applied to
materials with no magnetism, collinear magnetism, or non-
collinear magnetism. Another key advantage is that the
method works efficiently for non-periodic materials and for
materials with 1, 2, or 3 periodic directions.

We tested serial code and OpenMP parallelized code run on
1, 2, 4, 8, and 16 processors on a cache coherent node. We
studied materials containing from one to 8748 atoms per unit
cell. For each material, the memory required was nearly inde-
pendent of the number of parallel threads. We developed an
equation that can safely predict the required memory based on
the system type (i.e., no magnetism, collinear magnetism, or
non-collinear magnetism), the number of grid points in the unit
cell, and the number of atoms in the unit cell. The required
memory scales linearly with increasing system size. For serial
mode, the computational time per atom ranged from �9 to 94
seconds. The parallelization efficiencies were typically >50%,
indicating good performance. Even computations for the Ni
metal containing a single atom per unit cell exhibited good
parallelization efficiencies. Computations for a series of ice
crystal unit cells containing 12, 96, 324, 768, 1500, 2592, 4116,
6144, and 8748 atoms showed the serial and parallel compu-
tational times scale linearly with increasing unit cell size, the
parallelization efficiency is independent of the unit cell size,
and the memory required scales linearly with the unit cell size.
Both the required memory and computational time scaled
linearly with increasing number of grid points.

There are several important components of memory
management. First, the large arrays should be allocated as
shared variables (not private variables) to avoid separate large
array allocations for each parallel thread. Also, reductions
should not be performed over the large arrays, because reduc-
tions require the temporary creation of a private copy of the
array for each thread. Separate large array allocations for each
parallel thread would cause the required memory to grow with
addition of parallel threads, while using large shared arrays (not
reduced over) causes the required memory to be approximately
constant irrespective of the number of parallel threads. Second,
This journal is © The Royal Society of Chemistry 2018
the large arrays should be stored and accessed in cache friendly
order to avoid false sharing. Specically, a parallel thread
should work on elements of the large array that do not invali-
date the cache used by the other parallel threads, and a parallel
thread should access the large array in cache line order. Third,
the REDUCTION directives should be properly positioned to
avoid performing the REDUCTION directive an unnecessary
number of times. Fourth, the number of ATOMIC or CRITICAL
directives should be minimized to avoid parallel threads wait-
ing for each other. Fih, the program should read the input
information in chunks so that it does not overow the read
buffer size set by the operating system.

It is useful to make a few comments about the relationship
between parallel threads and computing cores. Nearly all of the
computations performed in this paper used a one-to-one ratio
between parallel threads and computing cores. For comparison,
we also performed computations in which there were two
parallel threads per computing core (i.e., 32 threads on 16
cores). For two threads per core most parts of the computation
ran about the same speed as one thread per core, but two
threads per core ran slightly slower overall than one thread per
core. We also performed parallelization tests with and without
binding a particular thread to a particular computing core, but
the differences in computational times were negligible.

One system exhibiting poor parallelization efficiencies
(<50%) was the water–water dimer placed in a large unit cell. For
this system, the parallelization efficiency was low owing to the
substantial fraction of time required to read the input density
grid les. For simplicity, we did not parallelize the input le
reading. Thus, in cases where a small number of atoms are
placed within a large unit cell containing a large proportion of
vacuum space, the serial input le reading can become the rate-
limiting part of the computation. The parallelization efficiency
was >50% when recomputed excluding the time required to
read and process the input les (i.e., set up the density grids).
Since the time required to read and process the input les was
12 seconds per atom for this case, we do not believe this
represents a serious limitation.

For calculations using density grids computed via planewave
QC calculations, we investigated the effects of changing the
RSC Adv., 2018, 8, 2678–2707 | 2705

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

RSC Advances Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
number of k-points, the planewave cutoff energy, and the real-
space grid spacing. The MAD and MADM were computed to
quantify non-systematic and systematic errors, respectively, in
the NAC, atomic dipole magnitude, max quadrupole eigenvalue,
SBO, density tail exponent, and r-cubed moment. We propose
appropriate choices for the number of k-points, the planewave
cutoff energy, and the real-space grid spacing to simultaneously
achieve low computational cost and high precision.

All of our results show the DDEC6 method is well-suited for
use as a default APAM in QC programs. Specically, we found
the DDEC6 method can be written as a modular program, effi-
ciently parallelized, and run with reasonable computational
times and memory requirements. For systems with pre-
computed electron and spin density grids, both the required
computational time and memory scale linearly with increasing
system size. This makes the DDEC6 method well-suited for
studying both large and small systems. As demonstrated in our
prior articles, the extremely broad applicability and high
chemical accuracy of the DDEC6 method makes it the rst AIM
method suitable for use as a default APAM in QC programs.17,18

We hope these results will inspire QC program developers to
interface the DDEC6 method with their QC programs.

When generating density grids from Gaussian basis set
coefficients inputs, there are further opportunities for optimi-
zation. For this kind of calculation, the density grid generation
(but not the input le reading) took up more computational
time than the subsequent core electron partitioning, charge
partitioning, spin partitioning, and bond order analysis. This
suggests further opportunities for optimizing the integration
grid strategy for Gaussian basis set coefficients inputs. Some
strategies worth considering are atom-centered overlapping
grids,31 atom-centered non-overlapping grids,32 and separable
uniform grid averaging.79

Conflicts of interest

There are no conicts of interest to declare.

Acknowledgements

This project was funded in part by National Science Foundation
(NSF) CAREER Award DMR-1555376. Supercomputing resources
were provided by the Extreme Science and Engineering
Discovery Environment (XSEDE).80 XSEDE is funded by NSF
grant ACI-1053575. XSEDE project grant TG-CTS100027 provided
allocations on the Trestles and Comet clusters at the SDSC and
the Stampede 1 cluster at the TACC. The authors sincerely thank
the technical support staff of XSEDE, TACC, and SDSC.

References

1 Q. Yang, D. Liu, C. Zhong and J.-R. Li, Chem. Rev., 2013, 113,
8261–8323.

2 I. Erucar, T. A. Manz and S. Keskin, Mol. Simul., 2014, 40,
557–570.

3 T. Murtola, A. Bunker, I. Vattulainen, M. Deserno and
M. Karttunen, Phys. Chem. Chem. Phys., 2009, 11, 1869–1892.
2706 | RSC Adv., 2018, 8, 2678–2707
4 T. S. Gates, G. M. Odegard, S. J. V. Frankland and
T. C. Clancy, Compos. Sci. Technol., 2005, 65, 2416–2434.

5 J. J. Spivey, K. S. Krishna, C. S. S. R. Kumar, K. M. Dooley,
J. C. Flake, L. H. Haber, Y. Xu, M. J. Janik, S. B. Sinnott,
Y. T. Cheng, T. Liang, D. S. Sholl, T. A. Manz, U. Diebold,
G. S. Parkinson, D. A. Bruce and P. de Jongh, J. Phys. Chem.
C, 2014, 118, 20043–20069.

6 D. Nazarian, J. S. Camp and D. S. Sholl, Chem. Mater., 2016,
28, 785–793.

7 R. Salomon-Ferrer, D. A. Case and R. C. Walker, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2013, 3, 198–210.

8 S. Cardamone, T. J. Hughes and P. L. A. Popelier, Phys. Chem.
Chem. Phys., 2014, 16, 10367–10387.

9 D. J. Cole, J. Z. Vilseck, J. Tirado-Rives, M. C. Payne and
W. L. Jorgensen, J. Chem. Theory Comput., 2016, 12, 2312–2323.

10 J. M. Wang, P. Cieplak, J. Li, T. J. Hou, R. Luo and Y. Duan, J.
Phys. Chem. B, 2011, 115, 3091–3099.

11 J.M.Wang, P. Cieplak, J. Li, J.Wang,Q. Cai,M. J.Hsieh,H. X. Lei,
R. Luo and Y. Duan, J. Phys. Chem. B, 2011, 115, 3100–3111.

12 P. Maxwell, N. di Pasquale, S. Cardamone and
P. L. A. Popelier, Theor. Chem. Acc., 2016, 135, 195.

13 R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833–1840.
14 G. Bruhn, E. R. Davidson, I. Mayer and A. E. Clark, Int. J.

Quantum Chem., 2006, 106, 2065–2072.
15 J. Cioslowski, J. Am. Chem. Soc., 1989, 111, 8333–8336.
16 T. A. Manz, RSC Adv., 2017, 7, 45552–45581.
17 T. A. Manz and N. Gabaldon Limas, RSC Adv., 2016, 6, 47771–

47801.
18 N. Gabaldon Limas and T. A. Manz, RSC Adv., 2016, 6, 45727–

45747.
19 T. A. Manz and D. S. Sholl, J. Chem. Theory Comput., 2011, 7,

4146–4164.
20 M. Metcalf, J. Reid and M. Cohen,Modern Fortran Explained,

Oxford University Press, Oxford, United Kingdom, 2011.
21 J. C. Adams, W. S. Brainerd, R. A. Hendrickson, J. T. Maine

and B. T. Smith, The Fortran 2003 Handbook, Springer, New
York, 2009.

22 R. M. Hanson, J. Appl. Crystallogr., 2010, 43, 1250–1260.
23 Jmol: an open-source Java viewer for chemical structures in

3D, http://www.jmol.org, accessed: July 2015.
24 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater.

Phys., 1993, 47, 558–561.
25 G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater.

Phys., 1994, 49, 14251–14269.
26 J. Hafner, J. Comput. Chem., 2008, 29, 2044–2078.
27 G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter

Mater. Phys., 1996, 54, 11169–11186.
28 T. A. Manz and D. S. Sholl, J. Chem. Theory Comput., 2012, 8,

2844–2867.
29 T. A. Manz and D. S. Sholl, J. Chem. Theory Comput., 2010, 6,

2455–2468.
30 T. A. Manz, J. Comput. Chem., 2013, 34, 418–421.
31 A. D. Becke, J. Chem. Phys., 1988, 88, 2547–2553.
32 G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84–

98.
33 E. D. Stevens, J. Rys and P. Coppens, J. Am. Chem. Soc., 1978,

100, 2324–2328.
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

Paper RSC Advances

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

1
 2

01
8.

 D
ow

nl
oa

de
d

on
 1

4/
02

/2
02

6
20

:4
5:

26
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d

L
ic

en
ce

.
View Article Online
34 J. L. Staudenmann, P. Coppens and J. Muller, Solid State
Commun., 1976, 19, 29–33.

35 L. P. Lee, D. J. Cole, C.-K. Skylaris, W. L. Jorgensen and
M. C. Payne, J. Chem. Theory Comput., 2013, 9, 2981–2991.

36 F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129–138.
37 P. Bultinck, C. Van Alsenoy, P. W. Ayers and R. Carbo-Dorca,

J. Chem. Phys., 2007, 126, 144111.
38 T. C. Lillestolen and R. J. Wheatley, Chem. Commun., 2008,

5909–5911.
39 M. Hermanns, Parallel Programming in Fortran 95 using

OpenMP, Madrid, Spain, 2002, pp. 1–71, http://
www.openmp.org/wp-content/uploads/
F95_OpenMPv1_v2.pdf, accessed: May 2017.

40 B. Chapman, G. Jost and A. R. van der Pas, Using OpenMP,
The MIT Press, Cambridge, Massachusetts, 2008.

41 L. P. Lee, N. G. Limas, D. J. Cole, M. C. Payne, C. K. Skylaris
and T. A. Manz, J. Chem. Theory Comput., 2014, 10, 5377–
5390.

42 C. K. Skylaris, P. D. Haynes, A. A. Mosto and M. C. Payne, J.
Chem. Phys., 2005, 122, 084119.

43 K. A. Wilkinson, N. D. M. Hine and C. K. Skylaris, J. Chem.
Theory Comput., 2014, 10, 4782–4794.

44 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. C. Burant,
S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam,
M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and
D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, 2010.

45 I. M. L. Billas, A. Chatelain and W. A. de Heer, Science, 1994,
265, 1682–1684.

46 S. Arai, T. Chatake, T. Ohhara, K. Kurihara, I. Tanaka,
N. Suzuki, Z. Fujimoto, H. Mizuno and N. Niimura, Nucleic
Acids Res., 2005, 33, 3017–3024.

47 N. Foloppe and A. D. MacKerell, J. Comput. Chem., 2000, 21,
86–104.

48 W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz,
D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and
P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179–5197.

49 J. D. Watson and F. H. C. Crick, Nature, 1953, 171, 737–738.
50 J. Sponer, J. Leszczynski and P. Hobza, Biopolymers, 2001, 61,

3–31.
51 T. van der Wijst, C. F. Guerra, M. Swart and

F. M. Bickelhaupt, Chem. Phys. Lett., 2006, 426, 415–421.
52 T. Lis, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst.

Chem., 1980, 36, 2042–2046.
This journal is © The Royal Society of Chemistry 2018
53 M. N. Leuenberger and D. Loss, Nature, 2001, 410, 789–793.
54 K. M. Mertes, Y. Suzuki, M. P. Sarachik, Y. Myasoedov,

H. Shtrikman, E. Zeldov, E. M. Rumberger, D. N. Hendrickson
and G. Christou, Solid State Commun., 2003, 127, 131–139.

55 J. Callaway, Quantum Theory of the Solid State, Academic
Press, San Diego, CA, 1991, pp. 1–120.

56 A. A. Mosto, C. K. Skylaris, P. D. Haynes and M. C. Payne,
Comput. Phys. Commun., 2002, 147, 788–802.

57 A. A. Mosto, P. D. Haynes, C. K. Skylaris and M. C. Payne, J.
Chem. Phys., 2003, 119, 8842–8848.

58 H. J. Monkhorst and J. D. Pack, Phys. Rev. B: Solid State, 1976,
13, 5188–5192.

59 P. E. Blochl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994,
50, 17953–17979.

60 G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater.
Phys., 1999, 59, 1758–1775.

61 P. L. Butzer, M. M. Dodson, P. J. S. G. Ferreira, J. R. Higgins,
O. Lange and P. Seidler, Signal Process., 2010, 90, 1436–1455.

62 C. E. Shannon, Proc. IEEE, 1998, 86, 447–457.
63 H. D. Luke, IEEE Commun. Mag., 1999, 37, 106–108.
64 H. Nyquist, Proc. IEEE, 2002, 90, 280–305.
65 G. Kresse, M. Marsman and J. Furthmüller, The VASP Guide,

http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html, accessed:
May 2017.

66 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, 1133–1138.
67 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys

and A. P. Sutton, Phys. Rev. B: Condens. Matter Mater. Phys.,
1998, 57, 1505–1509.

68 S. Grimme, A. Hansen, J. G. Brandenburg and C. Bannwarth,
Chem. Rev., 2016, 116, 5105–5154.

69 A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
70 P. J. Stephens, F. J. Devlin, C. F. Chabalowski and

M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.
71 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson,

M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B:
Condens. Matter Mater. Phys., 1992, 46, 6671–6687.

72 G. E. Scuseria and H. F. Schaefer, J. Chem. Phys., 1989, 90,
3700–3703.

73 N. Yamamoto, T. Vreven, M. A. Robb, M. J. Frisch and
H. B. Schlegel, Chem. Phys. Lett., 1996, 250, 373–378.

74 H. Nakatsuji and K. Hirao, J. Chem. Phys., 1978, 68, 2053–2065.
75 H. Nakatsuji, Chem. Phys. Lett., 1979, 67, 334–342.
76 R. A. Kendall, T. H. Dunning and R. J. Harrison, J. Chem.

Phys., 1992, 96, 6796–6806.
77 L. Pauling, J. Am. Chem. Soc., 1947, 69, 542–553.
78 J. Rezac, K. E. Riley and P. Hobza, J. Chem. Theory Comput.,

2011, 7, 2427–2438.
79 J. P. Ritchie and S. M. Bachrach, J. Comput. Chem., 1987, 8,

499–509.
80 J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,

A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lia,
G. D. Peterson, R. Roskies, J. R. Scott and N. Wilkins-
Diehr, Comput. Sci. Eng., 2014, 16, 62–74.

81 A. Tkatchenko and M. Scheffler, Phys. Rev. Lett., 2009, 102,
073005.

82 A. Tkatchenko, R. A. DiStasio, R. Car and M. Scheffler, Phys.
Rev. Lett., 2012, 108, 236402.
RSC Adv., 2018, 8, 2678–2707 | 2707

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra11829e

	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...

	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...

	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...

	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...
	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and...

