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Abstract

An interatomic potential for Al-Tb alloy around the composition of Al90Tb10 was 

developed using the deep neural network (DNN) learning method. The atomic 

configurations and the corresponding total potential energies and forces on each atom 

obtained from ab initio molecular dynamics (AIMD) simulations are collected to train 

a DNN model to construct the interatomic potential for Al-Tb alloy. We show the 

obtained DNN model can well reproduce the energies and forces calculated by AIMD. 

Molecular dynamics (MD) simulations using the DNN interatomic potential also 

accurately describe the structural properties of Al90Tb10 liquid, such as the partial pair 

correlation functions (PPCFs) and the bond angle distributions, in comparison with the 

results from AIMD. Furthermore, the developed DNN interatomic potential predicts 

the formation energies of crystalline phases of Al-Tb system with the accuracy 

comparable to ab initio calculations. The structure factors of Al90Tb10 metallic liquid 

and glass obtained by MD simulation using the developed DNN interatomic potential 

are also in good agreement with the experimental X-ray diffraction data. The 

development of short-range order (SRO) in Al90Tb10 liquid and undercooled liquid is 
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also analyzed and three dominant SROs, i.e., Al-centered distorted icosahedron 

(DISICO), Tb-centered ‘3661’ and ‘15551’ clusters, respectively, are identified. 

I. Introduction

Aluminum-rare-earth (Al-RE) binary alloys with Al-rich composition (about 90 at. 

% Al) can form metallic glasses by rapid quenching from the liquid state [1]. It has 

been shown that these Al-RE alloys have very high strength-to-weight ratio owing to a 

high proportion of light weight Al [2-4]. However, Al-RE alloys belong to marginal 

glass-forming systems which usually have high density of nanocrystals in the samples 

prepared by rapid solidification process [1, 5]. Moreover, the stable as well as 

metastable Al-rich intermetallics vary across lanthanide series [1, 6-8]. 

In order to understand the microscopic mechanisms of phase formation and 

competition in these complex alloys, the knowledge of short to medium range structural 

orders in liquid and undercooled liquid at atomistic level and the corresponding time 

evolution of the atomistic structures during solidification/devitrification are critical. 

Investigation of the atomistic structural difference among these binary alloys at liquid, 

glass as well as crystalline phases will provide us valuable insights to further tune these 

alloys for better properties and glass-forming ability. 

We note that while most interest in the literature has been focused on light RE (e.g., 

Al-Ce [8]), Al alloyed with heavy RE have not been extensively investigated, except 

for Al-Sm system at the composition around Al-90 at. % where both experimental 

studies and MD simulations using an empirical interatomic potential have been reported 
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[9-11]. One of the bottlenecks hindering computational simulation of Al-RE alloys is 

that reliable interatomic potentials for the most of Al-RE alloys (e.g., Al-Tb) are still 

lacking. Although ab initio calculations can offer high accuracy of interatomic 

interactions for Al-RE alloys, it can deal with only up to several hundred atoms and 

within a few hundred picoseconds (ps) simulation time in most of the simulations due 

to the expensive computational cost of the method. Therefore, it is difficult for AIMD 

simulations to investigate the long-time relaxation in glass and phase competition 

during solidification, which is a key to understand the metallic glass formation.

Machine learning potential for condensed-matter was first proposed by Behler and 

Parrinello [12]. After that, many other machine learning potentials were developed and 

applied in MD simulations [13-17]. Based on these earlier works, a deep learning 

method [18-20] with DNN model for many-body interatomic interactions has been 

developed recently which is very promising for overcoming the dilemma in simulation 

speed and accuracy. In a recently developed DNN learning software package called 

DeePMD-kit [20], the snapshots (which include the total potential energies, forces on 

each atom, and virial for a set of atomic configurations) from ab initio calculations are 

used to train interatomic potentials through DNN machine learning. After the training 

process, the obtained DNN model is not only able to accurately reproduce the potential 

energies and forces in the training data set, but also accurately predicts structural and 

dynamical properties of the materials being modeled. These advantages make the DNN 

learning method suitable for studying solidification and devitrification of alloy systems 

even the phase competition and transition in these systems are complex. Moreover, the 
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interatomic potential constructed by the trained DNN model can be ready to use in 

standard LAMMPS package [21] to perform MD simulations. The computational cost 

of the MD simulations with DNN interatomic potentials scales linearly with system size, 

which enables us to investigate the long-range correlations and long-time relaxations 

in metallic glass systems.  

In this paper, development of interatomic potential for Al-rich Al-Tb Alloys by the 

DNN learning method is presented. In order to enhance the sampling space, the training 

data set for the DNN model include snapshots from pure Al and Tb liquids as well 

Al90Tb10 liquid at various temperature, in addition to various crystalline phases of pure 

Al, pure Tb, and Al-Tb binary compounds (see Table. 1). The potential energies and 

forces in the training data set are calculated by first-principles density functional theory 

(DFT) using VASP [22, 23]. We demonstrate that the obtained DNN interatomic 

potential from the machine learning describes accurately the structures of Al90Tb10 

liquid/glass and various Al-Tb crystalline phases in comparison with those from ab 

initio calculations and experiments. Moreover, we use cluster alignment method [24] 

to analyze the SROs in the Al90Tb10 liquid and undercooled liquid obtained from MD 

simulations using the DNN potential. The results show that the Al-centered clusters are 

dominated by a distorted icosahedral (DISICO) motif, while the ‘3661’ and ‘15551’ 

motifs are the two dominant SROs for Tb-centered clusters. 

The rest of paper is organized as follows. The DNN learning method for 

interatomic potential will be described in Sec. II. In Sec. III, we will present the details 

of data set generation for DNN model training and the parameters of DNN learning 
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process. In Sec. IV, we will demonstrate the reliability of obtained DNN interatomic 

potential. In Sec. V, we will use cluster alignment method to investigate the SROs 

development in liquid and undercooled liquid Al90Tb10 samples prepared by the MD 

simulations using the DNN potential. Finally, summaries and conclusions are given in 

Sec. VI. 

II. Interatomic potential by deep neural network learning method

Artificial neural networks (NNs), inspired by the biological NNs that constitute 

human brain, provide an accurate tool for the representation of arbitrary functions. A 

NN contains interconnected layers of nodes. There are three essential types of layers: 

an input layer, an output layer and hidden layers (which can be multilayers depending 

on the complexity of the model). The input layer collects input patterns. Hidden layers 

perform the learning functions by adjusting the network parameters to minimize the 

lost function defined in the NN model. The output layer has classifications or output 

signals to which input patterns may map. A “node” in a NN is a mathematical function 

that collects and classifies information according to a specific architecture. To model 

the interatomic potential by NN, the information fed to the input layer is a set of 

descriptors {Di} which describe atomistic environment around every atom i of the 

structures in the training data set. The information extracted from the output layer are 

the energy Ei on each atom. Then the total potential energy E of each structure can be 

written as the sum of atomic energy Ei, i.e., . The mapping from the local 𝐸 = ∑
𝑖𝐸𝑖

environment of atom i (i.e., {Di}) to energy of each atom Ei is done by the hidden layers 
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in the NN model where the connection weights between the nodes in different layers 

and the bias parameter on each node of the hidden layers are used to model this mapping 

[12, 19]. These weights and bias parameters are obtained by NN training which 

optimize the lost function with respect to the training data set. Therefore, the potential 

energy surface of the system is acquired once the parameters in NN have been 

determined by training process. Furthermore, forces on each atom can be calculated 

analytically from the potential energy represented by NN. A schematic illustration of 

artificial NNs for modeling interatomic potentials is shown in Fig. 1.

In the present study, the Potential-Smooth version of DeePMD-kit software 

package [19] is used to train the DNN interatomic potentials. It has demonstrated this 

deep learning method is very robust in developing interatomic potentials for MD 

simulation studies of liquid, crystalline bulk structures and organic molecules [19, 25]. 

A crucial step in modeling interatomic potential by DNN is the construction of local 

structure descriptor {Di} from the Cartesian coordinates of the input atomistic 

structures. To ensure the invariance of the total energy with respect to rotation or 

translation of the structures or the interchanging of two atoms of the same element in 

the structure, the descriptors {Di} have to satisfy such invariance conditions. In early 

work of Behler and Parrinello, a set of symmetry functions has been used for the 

descriptors [12]. In the present work, we adopt the local coordinate frame developed in 

DeePMD-kit [20] to construct the {Di}. The description of the local environment of 

atom i is constructed in two steps. First, the relative Cartesian coordination  of {𝑅𝑖}

neighboring atoms j within cutoff radius  with respect to atom i are transferred to 𝑟𝑐
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the generalized coordination  as{𝑅𝑖}

     (1){𝑅𝑖} = {𝑥𝑗𝑖,𝑦𝑗𝑖,𝑧𝑗𝑖}→{𝑅𝑖} = {𝑠(𝑟𝑗𝑖), 𝑥𝑗𝑖,𝑦𝑗𝑖,𝑧𝑗𝑖}

where , , and  have angular 𝑥𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑥𝑗𝑖 𝑟𝑗𝑖 𝑦𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑦𝑗𝑖 𝑟𝑗𝑖 𝑧𝑗𝑖 = 𝑠(𝑟𝑗𝑖)𝑧𝑗𝑖 𝑟𝑗𝑖

information of local environment. The radial information is in  which is smooth 𝑠(𝑟𝑗𝑖)

at the boundary of cutoff radius . It is defined as [19]𝑟𝑐

        (2)𝑠(𝑟𝑗𝑖) = {
1
𝑟𝑗𝑖

,  𝑟𝑗𝑖 < 𝑟𝑐𝑠
1
𝑟𝑗𝑖{1

2cos [𝜋
𝑟𝑗𝑖 ― 𝑟𝑐𝑠

𝑟𝑐 ― 𝑟𝑐𝑠] +
1
2},𝑟𝑐𝑠 <  𝑟𝑗𝑖 < 𝑟𝑐

0,  𝑟𝑗𝑖 > 𝑟𝑐

where  is smooth cutoff parameter. Second, an embedding neural network (called 𝑟𝑐𝑠

filter NN) is introduced, where the radial information  are fed to its input. The 𝑠(𝑟𝑗𝑖)

output of filter NN will serve as weight coefficients to the generalized coordination 

 in constructing the local structure descriptor  which describes the local {𝑅𝑖} {𝐷𝑖}

environment of atom i. Finally, the local structure descriptor  is fed to the input of {𝐷𝑖}

another neural network (called fitting NN), yielding the atomic energy Ei, thus the 

mapping from local configuration to atomic energy is achieved. 

The training process is a procedure of optimizing the parameters in filter and fitting 

NNs by deep learning software package such as TensorFlow [26] to minimize the total 

loss function. In the present work, the total loss function  is evaluated 𝐿 =
1
𝑆𝑏

∑𝑆𝑏

𝑘 = 1𝐿𝑘

on each training step for a subset of training data (called a batch), where  is the total 𝑆𝑏

number of snapshots in the batch.  is the loss function for the kth snapshot in the 𝐿𝑘

batch and is defined as

             (3)𝐿𝑘 =
𝑝𝑒

𝑁|∆𝐸(𝑘)|2 +
𝑝𝑓

3𝑁∑
𝑖|∆𝑓(𝑘)

𝑖 |2

where the total potential energy error  and force error  on atom i are the ∆𝐸(𝑘) ∆𝑓(𝑘)
𝑖

Page 7 of 38 Physical Chemistry Chemical Physics



8

differences between the DNN predictions and ab initio calculation results for the atomic 

structure of the kth snapshot, respectively. N is total number of atoms in the structure. 

 and  are prefactors for energy and force respectively, which are continuously 𝑝𝑒 𝑝𝑓

changing during the training process for optimization of DNN.

III. Training data preparation and training process 

The training data set is critical to the success of the NN machine learning to 

generate accurate interatomic potentials for reliable MD simulations. The target of our 

DNN model is to simulate the liquid and glass structures of Al90Tb10 alloy. Hence, the 

training data set is primarily composed of the snapshots of liquid Al90Tb10 at different 

temperatures prepared by AIMD simulations. The AIMD simulations were performed 

using a cubic cell containing 180 Al atoms and 20 Tb atoms and with periodic boundary 

conditions. The size of unit cell is , which is chosen 15.989Å × 15.989Å × 15.989Å

according to the density of liquid Al ( ) and liquid Tb ( ), i.e., 𝑛Al 𝑛Tb 𝑛Al90Tb10 = 0.9𝑛Al

. +0.1𝑛Tb

All the energies and forces of the structures in the training and validation data sets 

described below are calculated by VASP package. The time step of AIMD is taken as 

3fs and NVT ensemble with Nose-Hoover thermostat [27, 28] are used in all 

simulations. The projector-augmented-wave (PAW) method [29] is used to describe the 

core-valence electron interaction. The generalized gradient approximation (GGA) in 

the Predew–Burke–Ernzerhof (PBE) form [30] is used for the electronic exchange and 

correlation potential. The default energy cutoff for the plane wave basis set from PBE 
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potential is used and only the gamma point is used to sample the Brillouin zone in all 

AIMD simulations. 

The initial configuration for the AIMD simulations was randomly selected from 

those generated by classical MD simulations using the available interatomic potential 

for Al-Sm [9]. Then the Sm atoms are replaced by Tb atoms and AIMD simulation was 

performed at 2000K for 2000 MD steps. Next, the sample is cooled down to 800K at a 

cooling rate of 3.3 1013 K/s. During this cooling process, snapshot atomic ×

configurations at the temperatures of 2000K, 1800K, 1600K, 1400K, 1200K, 1100K, 

1000K, 900K, 800K, respectively, are randomly picked up to initialize the isothermal 

MD simulations at the corresponding temperatures. The isothermal MD simulations for 

each temperature was performed for 90 ps and snapshots at every step of the AIMD 

simulations are collected. The total number of the snapshots collected for the 9 

temperatures are 270,000, among them 240,000 are randomly selected as training data 

set and the rest of 30,000 are used as validation data set for testing the trained DNN 

model. 

In experiment, phase separation of fcc Al has been observed in the as-quenched 

Al-Tb glass [31]. In order to ensure that the DNN potential can handle correctly 

possible phase separation, we also add snapshots of the pure Al and Tb liquids/solids 

into the training data set. Both the pure liquid Al (Tb) and crystal fcc Al (hcp Tb) are 

calculated by VASP and included in the training data set. For the pure liquid Al, the 

sample is simulated isothermally at T=1400K and 2000K while the simulation 

temperatures for liquid Tb is 1800K and 2200K, respectively. Both Al and Tb liquid 
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sample contain 108 atoms and with periodic boundary conditions. The AIMD 

simulations of Al (Tb) liquid are first performed isothermally at liquid phase 

temperatures for 2000 steps to melt the samples and obtain the liquid state of Al (Tb). 

After that, all the MD steps during the following 30ps simulations for each temperature 

are collected. Then, in all the ab initio data 18,000 snapshots for Al or Tb liquids 

respectively are randomly picked up for the training data set. In addition, the remaining 

2,000 snapshots of each pure liquids are collected for the validation data set. 

The training and validation data set for our DNN learning model also included the 

information of the relevant crystalline phases. In order to obtain the snapshots of 

crystalline phases, AIMD simulations with a supercell of fcc Al (hcp Tb) containing 

108 atoms at finite temperature are employed. It allows the atoms to move around the 

equilibrated positions in the crystals and then generate a serial snapshots of crystal 

structures with distortions. Moreover, in order to obtain the information about atomic 

structures and forces far from the equilibrium, we also carry out the ab initio 

simulations at different lattice constants. For fcc Al crystal the lattice constant is 

. For hcp Tb crystal the lattice constant is 𝑎 = 4.05(1 ± 0.02𝑛) Å, 𝑛 = 0,1,2,3,4,5

. At each lattice 𝑎 = 3.60(1 ± 0.02𝑛) Å,  𝑐 = 5.70(1 ± 0.02𝑛)Å, 𝑛 = 0,1,2,3,4,5

constant, all atoms are distorted by means of AIMD simulations at T=300K. In these 

ways, we generate and randomly select 2,000 distorted fcc Al crystal structures and 

2,000 distorted hcp Tb crystal structures at different lattice constants (or pressures) to 

be included in the training data set. Another 200 such distorted Al and Tb crystal 

structures respectively are also collected in the validation data set. In addition to the 
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pure Al and Tb crystalline phases, we also include the known crystalline phases of Al-

Tb alloy which covered the whole composition range, i.e., Al17Tb2 [32], Al4Tb [33], 

Al3Tb [34], Al2Tb [35], AlTb [36], Al2Tb3 [37], Al2Tb [38] and AlTb3 [39], to the 

training data set. For each of these crystalline phases, the snapshot structures were 

generated in the same way as that used for Al and Tb crystalline structures described 

above. Similarly, 2000 snapshot structures from AIMD simulations for each compound 

are included in the training data set and another 200 snapshots are used for the 

validation data set. The overall information of training and validation data set are 

summarized in Table 1. 

In the DNN training process, in order to capture the local configuration information 

up to the second neighboring shell, the radial cutoff  is taken as 7.2 Å which is about 𝑟𝑐

the radial of second shell from the PPCFs in AIMD simulations of Al90Tb10 liquid. The 

smooth cutoff parameter  is chosen to 7.0 Å. The filter neural network has two 𝑟𝑐𝑠

hidden layers with 50 and 100 nodes, respectively. The fitting neural network model 

has three hidden layers with equal numbers of nodes (240 nodes) per layer. The DNN 

is initialized with random numbers and the total number of training steps is 2,000,000. 

The exponentially decaying learning rate is used. At the ith training step the learning 

rate is defined as , where the start learning rate is 0.001 and 𝑟𝑙(𝑖) = 0.001 × 0.96𝑖 10000

the decay rate is 0.96 with decay step of 10000. The energy prefactor  in loss 𝑝𝑒

function starts at 0.2 and ends up to 2. Meanwhile, for forces the prefactor  is 100 𝑝𝑓

at beginning and goes down to 1 at the end of training process. The obtained interatomic 

potential for Al-Tb alloy in the form of DNN model (a pb file used in TensorFlow) is 
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provided in the Supplemental Material. 

IV. Performance of the deep neural network interatomic potential

Fig. 2(a)-(d) show the comparison of energies and forces from the trained DNN 

model and ab initio results for 1,000 snapshots of Al90Tb10 liquid which are randomly 

picked up from the training and validation data set, respectively. The vertical coordinate 

represents the energies (or forces along x axis) of the snapshot structures calculated by 

the trained DNN model while the horizontal coordinate is the corresponding energies 

(or forces along x axis) obtained by ab initio calculations. It can be seen that the trained 

DNN model not only well reproduces the ab initio results in the training data set but 

also accurately predict the energies and forces for the snapshots in the validation data 

set. The root mean square (RMS) error of energy is below 3.0 meV/atom and the force 

RMS error is on the order of 0.1 eV/Å, which is sufficient for investigating the 

structures and dynamics of liquid. Moreover, the trained DNN model can also well 

predict the energies and forces for the atomic configurations which are not included in 

the training or validation data set. For example, although the snapshots in the AIMD 

simulation at temperature 1300K are not included in the training or validation data set, 

Fig. 2(e) and (f) show excellent prediction of energies and forces of these atomic 

configurations. More details of the energy and force RMS errors from the DNN model 

predictions for all the systems which are used to train DNN are shown Table. 1. It can 

be seen that the obtained DNN can well reproduce all the ab initio results including 

both liquid and crystalline structures. 

The reliability and transferability of the obtained DNN potential are further tested 

Page 12 of 38Physical Chemistry Chemical Physics



13

by using it in a MD package such as LAMMPS to study the temperature dependent 

structures of liquid. Fig. 3 shows the comparison of the total PPCF, Al-Al, Al-Tb, and 

Tb-Tb partial PPCFs of liquid Al90Tb10 at T=1300K and 2000K calculated by AIMD 

and MD simulation with DNN potential. The initial configurations of both AIMD and 

MD with DNN potential is the same. The simulation times for statistical average of 

PPCF are 270ps and 30ps for the samples at T=1300K and 2000K, respectively. It 

shows that the PPCFs from MD with DNN potential agree well with those from AIMD 

simulations, except a small discrepancy in Tb-Tb PPCFs. Such a small discrepancy 

would be partially attributed to the relatively poor statistics due to the small number of 

Tb atoms (only 20 Tb atoms compared to 180 Al atoms in a box) used in the simulation. 

The statistical sampling for the Tb-Tb pairs during the short MD simulation time 

(especially in AIMD simulation) would not be sufficient particularly at lower 

temperature where atoms are less mobile. When the developed DNN potential is 

applied to simulate the pure Al and Tb liquid, we find that the DNN potential can well 

reproduce the PCFs of pure Al and Tb liquid in comparison with those from AIMD, as 

shown in the Fig. 4. The well agreement of Tb radial distribution function as shown in 

Fig. 4(b) indicates that the Tb-Tb interaction predicted by DNN potential is reliable.

Besides the PPCF, the bond angle distribution can provide more structure 

information about the liquid samples. Thus, it can also be used to test the reliability of 

DNN potential. We take the first minima of PPCF as the cutoff distances to calculate 

the bond angle distributions and all the structures used for PPCF calculations in Fig. 3 

are used to perform the statistics of bonding angles. The bond angle distributions for 
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Al90Tb10 liquid at T=1300K and 2000K obtained in this way are shown in Fig. 5 and 6, 

respectively. It can be seen that the DNN potential can well reproduce the bond angle 

distributions from AIMD simulations. 

Since glass formability strongly dependent on the competition with the nucleation 

and growth of various nearby crystalline phases, it is critical that the developed DNN 

potential can describe well the energy landscape of the Al-Tb system at the composition 

of interest including possible stable and metastable crystalline phases. The competition 

among these crystalline phases and the glass formation upon the solidification would 

highly correlates with their formation energies. Here the trained DNN potential is used 

to calculate the formation energies of crystalline phases in Al-Tb system at T=0K. The 

energies of pure fcc Al and pure hcp Tb are used as the reference for calculating the 

formation energy. The formation energy for crystalline phase AlmTbn is defined as 

. Fig. 7 shows the 𝐸form(Al𝑚Tb𝑛) = [𝐸(Al𝑚Tb𝑛) ― 𝑛𝐸(Al) ― 𝑚𝐸(Tb)] (𝑛 + 𝑚)

comparison of formation energies between DNN potential and ab initio calculations. In 

both ab initio and DNN potential calculation, the conjugate gradient algorithm is used 

to optimize the atomic structures. It can be seen that the formation energies of known 

stable crystalline phases in training data set predicted by DNN potential agree well with 

the results of ab initio calculations. Besides the crystalline phases in the training data 

set, the obtained DNN potential can also well predict the formation energies of crystals 

that are not used for training DNN potential. For example, we calculated the formation 

energies of other two types of Al3Tb crystals (the hypothetical Al3Tb with structure of 

Al3Y [40, 41] and BaPb3-type Al3Tb founded in ref. 34). The results show that the 
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DNN potential reproduced the order of formation energy for all the three Al3Tb phases. 

Recently, it is found that several complex metastable crystalline phases emerge in the 

devitrification process of Al90Sm10 system, and the structures of these complex phases 

have been identified by genetic algorithm (GA) search [42, 43]. These novel crystalline 

phases are valuable testing targets to validate the obtained DNN potential. We 

calculated the formation energies of Al82Tb10 (big tetra structure), Al120Tb22 (big cubic 

structure) and Al5Tb (big hex structure) metastable phases in which the Al composition 

is close to 90%. As shown in Fig. 7, the formation energies produced by the DNN 

potential are all close to the values of ab initio calculations. All the results of formation 

energies and relaxed lattice parameters obtained by DNN potential and ab initio 

calculations are listed in the Table. 2. 

The obtained DNN potential can be used to simulate for much larger system or 

much longer time compared to AIMD. Here, we have benchmarked the computation 

time per MD step in both AIMD and DNN MD for Al90Tb10 liquid with different system 

size, as shown in Fig. 8. The results show that for system containing 200 atoms (the 

same as the size of the liquids in the training data set) the DNN MD will be more than 

3 order of magnitude faster than AIMD. In addition, the results also confirm that the 

computation time of DNN MD scales linear with system size. Therefore, the obtained 

DNN potential enable us to simulate the Al-Tb system containing up to thousands of 

atoms and with several tens of nanosecond simulation time.

Finally, we also perform MD simulations of Al-Tb liquid and glass using the 

developed DNN potential with the number of atoms much larger than those structures 

Page 15 of 38 Physical Chemistry Chemical Physics



16

in the training data set and compare the simulation results with the measurement from 

experiment. Experimentally, the liquid Al91Tb9 at 1174K was prepared by Cu-heart 

electric arc melting under Ar atmosphere and the glassy sample for Al90Tb10 was 

prepared by Cu block single melt-spinning technique, which were reported in ref. 31. 

The structure factors of the liquid and glass have been measured using high energy X-

Ray diffraction (XRD) [31]. For comparison, our MD simulation with DNN potential 

of liquid Al91Tb9 is performed with 5000 atoms (4550 Al and 450 Tb) in a cubic box. 

The initial configuration is randomly picked up from the snapshots in previous MD 

simulation of liquid Al-Sm, where the Sm atoms are replaced by Tb atoms. First, the 

sample is equilibrated at 1174K for 30ps. Then MD trajectories in the subsequent 

simulation of 30ps at the same temperature are collected to calculate S(q). Fig. 9(a) 

shows the calculated and experimental total structure factor of Al91Tb9 liquid at 

T=1174K. As one can see in Fig. 9(a), the first and second peaks of S(q) from MD with 

DNN potential agree well with the experimental data, except that there are some 

deviations around the first minimum. In addition, the height of pre-peak from MD with 

DNN potential is higher than that of experimental data. The glass MD sample of 

Al90Tb10 (4500 Al and 500 Tb) at T=300K is obtained by quenching from liquid of 

2000K with cooling rate of 1011 K/s. One can see that the position and height of pre-

peak from MD with DNN potential at T=300K agrees well with the experimental result, 

as shown in Fig. 9(b). Other peak positions and heights also agree well with 

experimental measurement. These results show that the developed DNN potential is 

suitable for MD simulations of Al-rich Al-Tb liquids and glasses. 
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V. Short-range order in Al90Tb10 metallic liquid 

Using the DNN potential developed above, we performed MD simulations to study 

the development of SRO in Al90Tb10 liquid as the function of temperature. The 

simulation is performed with 5000 atoms (4500 Al and 500 Tb) in a cubic box with 

periodic boundary conditions. An isothermal-isobaric ensemble and a Nose-Hoover 

thermostat are used in the simulation [27, 28]. The time step for simulation is 2.5fs. 

First the liquid Al90Tb10 sample is equilibrated at 2000K for 1 ns and then is 

continuously quenched down to the undercooled liquid state at T=800K with the 

cooling rate of 1011 K/s. The inherent structures of liquid Al90Tb10 sample at T=1200K 

and 950K and the undercooled sample at T=800K are used to analyze the temperature 

dependence of the SRO in Al90Tb10. 

Cluster alignment method developed previously [24] is used to analysis the SRO 

cluster around the Al and Tb atoms in the samples obtained from the DNN MD 

simulations described above. Fig. 10 shows the alignment score distributions for the 

Al- and Tb-centered clusters extracted from the samples at T=1200K, 950K, and 800K 

respectively against various templates as indicated in the inset of Fig. 11. Here, the 

alignment score is the measurement of similarity between the extracted cluster and the 

template. The smaller alignment score indicates the cluster and template are more 

similar to each other. For Al-centered clusters, we can see from Fig. 10(a)-(c) that the 

clusters are aligned better to the DISICO (a distorted ICO found in Ni-Zr system [45]) 

and ICO templates since the alignment scores with respect to these two templates have 
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relatively large portion of low score compared to that of the other templates. For the 

Tb-centered clusters, the distributions of the alignment score on the ‘3661’ and ‘15551’ 

templates are at the leftmost side compared to that of the other templates, as shown in 

Fig. 10(d)-(f). If we take 0.16 as the score cutoff value to assign the clusters to the 

templates, the fraction of the dominant clusters as the function of temperature can be 

evaluated as shown in Fig. 11. Fig. 11 (a) shows that the DISICO motif is the dominant 

one for the Al-centered clusters. The fraction of this type of SRO increase rapidly from 

about 13% at 1200K to about 31% at 800 K. For Tb-centered clusters, the ‘3661’ is the 

dominant SRO with its fraction increase from about 14% at 1200 K to about 40% at 

800K as shown in Fig. 11 (b). The ‘15551’ SRO is also substantial, with its fraction 

changes from 6% to 18% when the temperature is cooled down from 1200 to 800K.  

We note that the ‘3661’ motif has also been identified as the dominant SRO in Al90Sm10 

liquid and glass [11]. This may not be surprising due to the similarity between two rare 

earth elements Tb and Sm. However, the substantial ‘15551’ SRO observed in Al90Tb10 

is almost absent in the Al90Sm10 liquid/glass. This would be one of the major features 

makes Al90Tb10 different from Al90Sm10 in phase selection and devitrification.

In order to investigate if the development of SRO in the liquid will affect the 

dynamics of the liquid, we use atomistic trajectories from the DNN MD simulations to 

investigate the dynamics of the system. To quantitatively study the dynamics properties, 

we calculated the self-diffusivity D which is defined as 

          (4)𝐷 = lim
𝑡→∞

1
𝑁〈∑𝑁

𝑖 = 1|𝑹𝑖(𝑡 + 𝜏) ― 𝑹𝑖(𝜏)|2〉
6𝑡
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where N is the number of atoms, Ri are the coordinates of atom i, the numerator is mean-

square displacement (MSD), and 〈⋯〉 denotes the average over the arbitrary initial time 

τ. Fig. 12 shows the MSD as a function of time t for various kinds of atoms in the 

sample at T=800K. Here the cluster alignment describe above is performed on the initial 

atomic structure of MD trajectories to classify the atoms in the different SRO types. 

Then, we trace these identified atoms and calculate their MSD from the MD trajectories 

for 100 ps. It can be seen that the MSDs for all the atoms in the sample are proportional 

to simulation time. The self-diffusivity D for Al atoms is about 4 times of that for Tb 

atoms. Moreover, the Al and Tb atoms involved the ‘3661’ and ‘15551’ SRO clusters 

are less mobile compared to the other Al and Tb atoms which are not in ‘3661’ or 

‘15551’ SROs. These results suggest the development of the ‘3661’ and ‘15551’ SRO 

makes the liquid becomes more sluggish and promotes the glass formation.

VI. Summary

In this paper, we have developed a DNN interatomic potential for Al-rich Al-Tb 

alloys by DeePMD-kit software package based on deep learning method. The VASP 

package is used to calculate the snapshots of liquid and crystal Al-Tb structures to 

prepare the training data for machine learning. In order to train a transferable model, 

not only liquid Al90Tb10 but also the liquid of pure Al and pure Tb, as well as the 

crystalline structures of Al, Tb and binary Al-Tb compounds are included in the training 

data set to extend the sampling space. After the training process, the obtained DNN 

model has been demonstrated to predict accurately the energies and forces of Al-Tb 
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system for both structures included and not included in the training data set. 

The developed interatomic potential in the form of DNN model can be used in 

LAMMPS package to perform MD simulations. The results show that the DNN 

potential can well reproduce the PPCFs and bond angle distribution in AIMD 

simulations. Moreover, the calculated formation energies of crystalline phases of Al-

Tb system using the DNN potential are found to be excellent agreement with ab initio 

results. Finally, the total structure factors of liquid and glass Al90Tb10 calculated by 

DNN potential agree well with the XRD data. In particular, the MD with DNN potential 

can well reproduce the positions and heights of the peaks in structure factors of Al91Tb9 

liquid and Al90Tb10 glass as those measured in experiment. The Al90Tb10 liquid and 

undercooled liquid samples obtained from our simulations have also been analyzed by 

cluster alignment method to identify the dominant SRO structures. It is found that the 

Al-centered DISICO, the Tb-centered ‘3661’ and ‘15551’ motifs are three dominant 

SROs in the samples. The substantial ‘15551’ SRO identified in Al90Tb10 sample is 

absent in Al90Sm10 liquid/glass, which would be a key factor for understanding the 

different phase selection and devitrification behaviors between Al90Tb10 and Al90Sm10. 

Since the Al-RE alloys with Al-rich composition (about 90 at. % Al) is the most 

interesting composition range for glass formation and phase competition, our developed 

DNN potential is mainly trained by Al90Tb10 liquid data and the purpose of developed 

DNN potential is to simulate the Al-rich Al-Tb liquid. This purpose is ensured by the 

fact that the local composition in Al90Tb10 liquid could fluctuate around 90 at. % Al 

which enable the trained neural network has learned the interactions in Al-rich alloys 
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with different compositions around 90 at. % Al. The DNN potential has been tested for 

Al80Tb20 liquid at 2000 K and produced total and partial pair correlation functions in 

very good agreement with AIMD simulation results. Moreover, the well agreement of 

formation energies of crystalline phases with ab initio calculations shown in Fig. 7 

indicates the obtained DNN has some degree of prediction power for Al-Tb crystals 

with different compositions. However, we have not tested the DNN potential for 

liquid/alloys with Al composition less than 80%. In order to develop an accurate and 

transferable DNN potential for Al-Tb system with all compositions, expanding the 

training data to include more atomic configurations with different compositions would 

be needed.
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Fig. 1. The schematic illustration of deep learning method for modeling DNN 
interatomic potentials. First, the relative coordinates  of neighboring atoms with {𝑅𝑖}
respect to atoms i within cutoff radius are converted to the generalized coordinates 

, where  have angular information and  has radial information of {𝑅𝑖} {𝑥𝑖, 𝑦𝑖,𝑧𝑖} {𝑠𝑖}

local atomic environment. Second, using the radial part  in  as input, the {𝑠𝑖} {𝑅𝑖}
filter NN outputs the weight coefficients  which are added to the generalized {𝑔𝑖}

coordination . Then, the local structure descriptor  (preserves translation, {𝑅𝑖} {𝐷𝑖}

rotation and permutation symmetries) which describes the local environment of atom i 
is obtained. Next,  enters into the fitting NN, yielding the atomic energy Ei {𝐷𝑖}
which is added to the total energy E. 
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Fig. 2. Testing of energy and force predictions of the trained DNN model. Figure (a) 
and (b) are the comparisons of ab initio and DNN predicted energies and forces 
(along x axis) on the 1000 snapshots of Al90Tb10 liquid which are randomly picked up 
from the training data set. In figure (c) and (d), the 1000 snapshots in the validation 
data set are randomly collected. To further test the performance of DNN predictions, 
in figure (e) and (f) the 1000 snapshots are collected from the AIMD simulation at 
T=1300K which is not included in the group of simulation temperatures for training 
or validation data set.
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Systems 
for 

training 
DNN

Total number 
of atoms in 

box/supercell

Simulation 
temperatures

(K)

Total 
simulati
on time

(ps)

Total number 
of snapshots 
in training 

data set

Total 
number of 

snapshots in 
validation 
data set

Energy 
error 

(meV/atom
)

Force 
error 

(eV/Å)

Al90Tb10 
liquid

200 2000, 1800, 
1600, 1400, 
1200, 1100, 
1000, 900, 

800

90 for 
each 

tempera
ture

240,000 30,000 2.7 0.11

Tb liquid 108 1800, 2200 60 18,000 2,000 4.8 0.16
Tb crystal 108 300 6.6 2,000 200 4.4 0.09
Al liquid 108 1400, 2000 60 18,000 2,000 3.3 0.14

Al crystal 108 300 6.6 2,000 200 1.7 0.07
Al17Tb2 304 300 6.6 2,000 200 3.0 0.08
Al4Tb 120 300 6.6 2,000 200 1.9 0.08
Al3Tb 240 300 6.6 2,000 200 1.4 0.08
Al2Tb 192 300 6.6 2,000 200 1.0 0.08
AlTb 64 300 6.6 2,000 200 3.0 0.10

Al2Tb3 160 300 6.6 2,000 200 2.1 0.09
AlTb2 216 300 6.6 2,000 200 2.5 0.10
AlTb3 108 300 6.6 2,000 200 2.8 0.09

Table 1. The overall information of training and validation data set for Al-Tb system. 
The RMS errors of energy and force predicted by DNN model for the validation data 
set of various Al-Tb system are also shown in the table. 
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Fig. 3. Partial pair correlation functions in AIMD and MD simulations with DNN 
potential for liquid Al90Tb10 at (a)-(d)T=1300K and (e)-(h)2000K. 
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Fig. 4. Pair correlation functions in AIMD and MD simulations with DNN potential 
for pure liquid (a) Al and (b) Tb. 
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Fig. 5. The bond angle distributions in the liquid Al90Tb10 at T=1300K from AIMD 
and MD simulations with DNN potential. 
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Fig. 6. The bond angle distributions in the liquid Al90Tb10 at T=2000K from AIMD 
and MD simulations with DNN potential.
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Fig. 7. The formation energies of Al-Tb system calculated by DNN potential and ab 
initio method at T=0K. The solid squares denote the known stable crystal structures in 
the training data set of Al-Tb system. The open squares denote the hypothesis Al-Tb 
crystal with the structures of metastable crystalline phases found in Al-Sm system. 
They are, from left to right, Al82Tb10 (big tetra structure), Al120Tb22 (big cubic 
structure), Al5Tb (big hex structure). The open circles and triangles denote the 
hypothetical Al3Tb with structure of Al3Y and the BaPb3-type Al3Tb crystal, 
respectively. Noted that the open data is not included in the training data set, which 
suggests that the obtained DNN potential has ability to predict the formation energy 
for the unknown Al-Tb structure around composition of 10 at. % Tb. 
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crystalline 
phase

Structure a
(Å)

b
(Å)

c
(Å)

𝛼
( )°

𝛽
( )°

𝛾
( )°

Formation 
energy

(eV/atom)
4.053 4.053 4.053 90 90 90 0Al

4.038 4.038 4.038 90 90 90 0

9.582 9.582 8.728 90 90 120 -0.124Al17Tb2

9.423 9.423 9.003 90 90 120 -0.112

4.463 6.308 13.808 90 90 90 -0.356Al4Tb

4.415 6.295 13.785 90 90 90 -0.352

6.110 6.110 36.049 90 90 120 -0.442Al3Tb
6.130 6.130 35.985 90 90 120 -0.439

7.920 7.920 7.920 90 90 90 -0.529Al2Tb

7.888 7.888 7.888 90 90 90 -0.534

5.873 11.454 5.661 90 90 90 -0.430AlTb

5.861 11.476 5.638 90 90 90 -0.434

8.297 8.297 7.607 90 90 90 -0.358Al2Tb3

8.276 8.276 7.615 90 90 90 -0.341

6.597 5.117 9.447 90 90 90 -0.318AlTb2

6.575 5.037 9.640 90 90 90 -0.302
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4.762 4.762 4.762 90 90 90 -0.212AlTb3

4.774 4.774 4.774 90 90 90 -0.214

3.605 3.605 5.706 90 90 120 0Tb
3.617 3.617 5.668 90 90 120 0

13.202 13.202 9.502 90 90 90 -0.165Al82Tb10 

(big tetra) 13.247 13.247 9.512 90 90 90 -0.151

13.781 13.781 13.781 90 90 90 -0.248Al120Tb22 

(big cubic) 13.822 13.822 13.822 90 90 90 -0.231

5.407 5.407 17.729 90 90 120 -0.253Al5Tb 

(big hex) 5.430 5.430 17.636 90 90 120 -0.265

6.250 6.250 4.587 90 90 120 -0.472Al3Tb
(Al3Y 

structure)
6.300 6.300 4.618 90 90 120 -0.448

6.175 6.175 21.172 90 90 120 -0.458BaPb3-type 
Al3Tb

(from ref. 
34)

6.208 6.208 21.187 90 90 120 -0.444

Table. 2. Lattice parameters and formation energies of Al-Tb crystalline phases. In 
calculation of the formation energy, fcc Al and hcp Tb crystal were taken as the 
reference states. The top value is reproduced by the DNN potential and the bottom 
one is calculated by the ab initio method. 
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Fig. 8. The computation time per MD step calculated by ab initio (using ABINIT 
package [44]) and DNN potential versus system size. All calculations are performed 
on supercomputer with Intel Xeon CPU Gold 6130. It can be seen that the MD with 
DNN potential is linear scaling with system size. It suggests that the MD using DNN 
potential have ability to simulate for much larger system or much longer time 
compared to ab initio.
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Fig. 9. The total structure factor of (a) liquid Al91Tb9 and (b) amorphous Al90Tb10 
alloy. To obtain the amorphous Al90Tb10 for simulation, the sample is quenched from 
liquid at cooling rate of 1011 K/s. The inset figure shows the pre-peak (around 1.3 Å-1) 
of the total structure factor. It can be seen that the MD with DNN potential well 
reproduces the position and height of the pre-peak. 
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Fig. 10. The cluster alignment score distributions against various template motifs 
for Al- and Tb-centered clusters in the sample of 1200K, 950K, and 800K, 
respectively. The solid black line indicates the score cut-off value 0.16. The 
smaller alignment score indicates the more similar between the cluster and 
template motif.
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Fig. 11. The populations of Al-centered ICO, Al-centered DISICO, Tb-centered 
‘3661’, and Tb-centered ‘15551’ clusters in the sample. At liquid state of 
T=1200K, the Tb-centered ‘15551’ (‘3661’) already has considerable population. 
With temperature decreasing to T=800K, the population of the identified 
‘3661’+’15551’ clusters in the sample increases to about 60%.
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Fig. 12. The mean-square displacement of various kinds of atoms in the sample at 
T=800K, where the calculated self-diffusivities are listed in the legend.
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