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al–organic framework supported
palladium/Schiff-base complex as a highly efficient
and robust catalyst for the Suzuki reaction†

Shiva Kargar and Dawood Elhamifar *

The synthesis of C–C bonds is considered one of the most fundamental challenges in both organic

chemistry and the chemical industry, as these bonds are essential for the preparation of high-value

products. Therefore, it is crucial to develop efficient, cost-effective, and environmentally sustainable

methods for C–C bond formation. In this context, herein, a novel Schiff-base/Pd-functionalized Zr-

based UiO-66 MOF (UiO-66/SB-Pd) is synthesized through a straightforward post-modification process

and utilized as a highly efficient catalyst in the Suzuki C–C coupling reaction. The designed UiO-66/SB-

Pd material was characterized by using FT-IR, EDX, PXRD, TGA, N2 adsorption–desorption and SEM

analyses. This catalyst displayed remarkable catalytic performance and stability in the Suzuki coupling

reaction, facilitating the synthesis of a wide range of biaryl compounds. The catalyst retained its activity

after seven consecutive cycles. Moreover, a leaching test indicated the excellent stability of the Pd active

species under the reaction conditions.
1. Introduction

In recent decades, environmental concerns have driven signicant
advancements in supported heterogeneous catalysts due to their
superior environmental compatibility, enhanced efficiency, and
ease of recycling. Metal–organic frameworks (MOFs) are hybrid
materials created by the self-assembly of organic linkers andmetal
cations, attracting considerable interest for their potential in
catalysis and other advanced applications.1–3 MOFs, as porous
crystalline coordination polymers, demonstrate distinctive struc-
tural and functional properties, such as elevated surface area,
remarkable porosity, and variable pore dimensions, in addition to
the ability to modify their structure with various organic linkers.
These features make MOFs highly attractive heterogeneous cata-
lysts, particularly in organic transformations, where efficient
transport and interaction of reactants within the pores enhance
catalytic performance.4,5 Furthermore, MOFs have been exten-
sively employed in diverse applications including gas storage and
separation,6,7 water purication,8,9 sensing,10,11 photocatalysis,12,13

and drug delivery.14,15 In catalytic systems, MOFs can create acidic
or basic sites or serve as a scaffold for other catalysts.16 Moreover,
the catalytic efficacy of functional MOFs can be improved by
employing organic linkers via post-synthesis modication.
Zirconium-based metal–organic frameworks (Zr-MOFs), particu-
larly UiO-66, have garnered signicant interest owing to their
y, Yasouj, 75918-74831, Iran. E-mail: d.

tion (ESI) available. See DOI:

–4204
exceptional hydrothermal stability and diverse uses in catalysis
and environmental remediation. UiO-66 is made up of
[Zr6O4(OH)4] octahedral secondary building units (SBU) coordi-
nated by 1,4-benzenedicarboxylate linkers.17–19 The amine-
functionalized derivative, UiO-66-NH2, containing benzene dicar-
boxylate linkers with attached amine groups, facilitates post-
synthetic modications and offers improved functional charac-
teristics. As a result of these advancements, Zr-MOFs are emerging
as powerful platforms for the design of advanced catalytic
systems.20,21 Some recent reports in this matter are UiO-66-NH2-
HPW,22 UiO-66@Serine,17 UiO-66-NH2@cyanuric chloride@2-
aminopyrimidine/Pd NPs,20 UiO-66-N]CH–C6H3PO4H,23 HZSM-
5@UIO-66-NH2/Pd,24 and UiO-66-NH2@Pt@mSiO2.25

Meanwhile, the formation of C–C bonds is considered one of
the most fundamental and challenging reactions in organic
chemistry.26–31 The Suzuki coupling is a carbon–carbon cross-
coupling reaction between organic halides and organic boron
compounds, that widely is employed in the synthesis of natural
products, pharmaceuticals, and liquid crystalline materials.32–38

To date, numerous catalytic systems have been utilized for the
Suzuki coupling reaction.39–44However, their practical application
is limited due to the certain drawbacks such as the use of
expensive ligands, as well as tedious workup and product sepa-
ration. Hence, the development of an environmentally-friendly,
highly efficient, and affordable catalytic system for the Suzuki
coupling reaction is a signicant challenge between chemists.

In this work, we report the synthesis and characterization of
a novel Zr-based UiO-66 MOF supported Schiff-base/Pd complex
(UiO-66/SB-Pd) as well as its catalytic performance in the Suzuki
coupling reaction.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2. Experimental section
2.1. Synthesis of UiO-66-NH2 MOF

UiO-66-NH2 was synthesized using the same procedure based
on the previous work with some modications.45 In a typical
procedure, 40 mL of DMF was used to dissolve 0.233 g of ZrCl4
and 0.181 g of 2-aminoterephthalic acid (ATA). The mixture was
then allowed to agitate at 25 °C for 2 h. Subsequently, the
solution was transferred into a 100 mL Teon-lined stainless-
steel autoclave for solvothermal treatment (120 °C, 24 h). The
resulting sample was collected by centrifugation aer cooling
naturally, and it was repeatedly washed with fresh DMF and
methanol. Consequently, it was allowed to soak in methanol at
70 °C for an additional 24 h. The resultant pale-yellow product
was dried at 100 °C for 12 h and denoted as UiO-66-NH2.
2.2. Synthesis of UiO-66/SB

To achieve this, the UiO-66-NH2 (0.5 g) was dispersed in 30 mL
of dry toluene at 25 °C for 30 min. Then, salicylaldehyde (2 mL)
was added to the reaction vessel and it was allowed to reux for
24 h. Following centrifugation, the resultant UiO-66/SB was
washed with dry EtOH and allowed to dry for 7 h at 80 °C. The
solid product was denoted as UiO-66/SB.
Fig. 1 FT-IR spectra of UiO-66-NH2 (a), UiO-66/SB (b) and UiO-66/
SB-Pd (c).
2.3. Synthesis of UiO-66/SB-Pd

For this, 0.5 g of UiO-66/SB was dispersed in 20 mL of dry EtOH
for 30 min. Then, 1 mmol of Pd(OAc)2 was added and the
reaction vessel was agitated at room temperature for 24 h.
Following centrifugation, the nal product was washed with dry
ethanol, dried at 60 °C for 7 h and denoted as UiO-66/SB-Pd.
According to the inductively coupled plasma (ICP) analysis the
loading of palladium on UiO-66/SB was found to be 0.018 mmol
Pd per g.
Scheme 1 Preparation of UiO-66/SB-Pd.

© 2025 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2025, 7, 4194–4204 | 4195
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Fig. 2 PXRD of UiO-66/SB-Pd.

Fig. 3 EDX spectrum of UiO-66/SB-Pd.

Fig. 4 EDX-mapping of UiO-66/SB-Pd.
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2.4. Procedure for the Suzuki cross-coupling using UiO-66/
SB-Pd

To carry out the reaction, aryl halide (1 mmol), arylboronic acid
(1.5 mmol), K2CO3 (2 mmol) and 0.01 g of UiO-66/SB-Pd were
added into a reaction ask containing EtOH (10 mL) and the
obtained mixture was stirred at 50 °C. Aer the reaction was
nished, the UiO-66/SB-Pd catalyst was removed via centrifu-
gation. The purication of the products was accomplished
through column chromatography on silica gel using EtOAc and
hexane solvents.
2.5. IR and NMR data of some Suzuki products

2.5.1. 4-Phenylbenzaldehyde. IR (KBr, cm−1): 3035 (]C–H,
stretching vibration sp2), 1711 (C]O, stretching vibration),
1602, 1420 (C]C, Ar stretching vibration sp2). 1H-NMR (400
MHz, CDCl3): d (ppm) 7.45 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 6.8 Hz,
2H), 7.68 (d, J = 7.2 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.98 (d, J =
8.0 Hz, 2H), 10.09 (s, 1H). 13C-NMR (100 MHz, CDCl3): d (ppm)
127.3, 127.6, 128.4, 129.0, 130.2, 135.1, 139.7, 147.2, 191.9.

2.5.2. 4-Methylbiphenyl. IR (KBr, cm−1): 3035 (]C–H,
stretching vibration sp2), 2893 (C–H, stretching vibration sp3),
1608, 1432 (C]C, Ar stretching sp2). 1H NMR (400 MHz, CDCl3):
d (ppm) 2.38 (s, 3H), 7.27 (d, J = 7.5 Hz, 2H), 7.37 (t, J =

7.4 Hz,1H), 7.47 (t, J = 7.8 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.59
(d, J = 7.5 Hz, 2H). 13C NMR (100 MHz, CDCl3): d (ppm) 21.1,
127.1, 127.3, 127.6, 129.3, 129.5, 136.3, 139.1, 141.3.
3. Results and discussion
3.1. Characterization of UiO-66/SB-Pd catalyst

Scheme 1 depicts the synthesis procedure of UiO-66/SB-Pd.
Initially, UiO-66-NH2 was synthesized from ZrCl4 and ATA
under solvothermal conditions. The UiO-66-NH2 was then
chemically reacted with salicylaldehyde to afford UiO-66/SB.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 SEM image of UiO-66/SB-Pd.
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The UiO-66/SB-Pd nanocatalyst was nally delivered by treating
the UiO-66/SB support with Pd(OAc)2.

Fig. 1 displays the FTIR spectra of the samples at each
consecutive stage of the synthesis, including UiO-66-NH2 (a),
UiO-66/SB (b) and UiO-66/SB-Pd (c). The band at 1688 cm−1

signies the stretching vibrations of C]O in carboxylic groups,
whereas the strong peaks at 3393 and 3508 cm−1 denote the
asymmetric vibrations of N–H bonds in the free NH2 group. The
peaks at 1450 and 1594 cm−1 indicate the existence of the C]C
group in the 1,2,4-substituted benzene ring. The presence of Zr
can be conrmed by its distinctive peak at 768 cm−1, associated
with the Zr–O stretching vibration.46 The nal UiO-66-NH2 MOF
synthesis is demonstrated by the C]C stretching vibration
bands at 1500 cm−1, the symmetric and asymmetric C–O
stretching bonds at 1389 and 1568 cm−1, the C–N signals at
1261 and 1346 cm−1 and the C–C peak at 1440 cm−1

(Fig. 1a).2,47,48 A successful post-modication was also indicated
by the appearance of an imine bond (C]N) stretching vibra-
tions of the Schiff base at 1625 cm−1 (Fig. 1b).49 The observed
changes of the C–N and C]N peaks in the UiO-66/SB-Pd cata-
lyst to lower wavenumbers, relative to UiO-66/SB, signify the
successful complexation of Pd with the nitrogen atoms of the SB
ligand (Fig. 1c).

Powder X-ray diffraction (PXRD) analysis was conducted to
examine the crystallinity of UiO-66/SB-Pd (Fig. 2). This analysis
displayed diffraction peaks at 2q values of 8.7°, 14.9°, 17.1°,
22.3°, 25.7°, 30.8°, 32.2°, 35.6°, 37.5°, 40.6°, 43.3°, 50.1°, and
56.9°, which are corresponded to the crystal lattice exhibiting
Fm3m symmetry of zirconium benzene carboxylate units,50

indicating that UiO-66-NH2 retains its high stability throughout
the modication processes. It is important to note that the
palladium species in the designed catalyst are present as
palladium salts rather than as palladium NPs. Accordingly,
these NPs are not observed in the PXRD pattern. These results
are in good agreement with the previous studies.51–55

The immobilization of Pd on UiO-66/SB was investigated by
the EDX analysis (Fig. 3). This analysis distinctly conrmed the
presence of Zr, O, N, C, and Pd elements in the synthesized
Fig. 5 TG curve of UiO-66/SB-Pd.

© 2025 The Author(s). Published by the Royal Society of Chemistry
material, thereby validating the successful immobilization of
the SB/Pd complex on UiO-66-NH2.

Furthermore, the results of the EDX-mapping analysis
(Fig. 4), which are consistent with the FT-IR and EDX results,
demonstrated that the expected elements are distributed
uniformly in the UiO-66/SB-Pd framework.

Thermal gravimetric analysis (TGA) is a crucial method for
assessing the composition and thermal stability of materials.
Fig. 5 illustrates the TG, derivative TG and heat ow endow
down analyses of UiO-66/SB-Pd. The initial weight loss,
approximately 3%, occurring below 200 °C is attributed to the
Fig. 7 N2 adsorption–desorption isotherms of UiO-66/SB-Pd.

Nanoscale Adv., 2025, 7, 4194–4204 | 4197
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evaporation of surface water. The decomposition of DMF is
occurred between 200 and 300 °C, and the third weight loss at
300–500 °C could be attributed to the collapse of the UiO-66/SB
framework.3,56 These results demonstrate the exceptional
thermal stability of the UiO-66/SB-Pd material.

Scanning electron microscopy (SEM) analysis was employed
to examine the morphology and distribution of catalyst (Fig. 6).
This illustrates that UiO-66/SB-Pd possesses spherical particles
with homogenous distribution.

The specic surface area and porosity of the UiO-66/SB-Pd
catalyst were analyzed by N2 adsorption–desorption measure-
ments at 77 K. As depicted in Fig. 7, the isotherm of UiO-66/SB-
Pd shows a typical type I curve with a sharp increase at low
pressure areas, demonstrating its microporous properties57

with a high surface area of 464.3 m2 g−1.
The BJH pore size distribution analysis indicated that the

mean pore diameter of the designed nanocatalyst is 2.28 nm
(Fig. 8). The properties such as high specic surface area and
Fig. 8 BJH pore size distribution analysis of UiO-66/SB-Pd.

Table 1 Effect of solvent, catalyst loading, base and temperature in the

Entry Catalyst Cat. loading (g) Solvent

1 UIO-66/SB-Pd 0.005 H2O
2 UIO-66/SB-Pd 0.015 H2O
3 UIO-66/SB-Pd 0.01 H2O
4 — — H2O
5 UIO-66/SB-Pd 0.01 H2O
6 UIO-66/SB-Pd 0.01 H2O
7 UIO-66/SB-Pd 0.01 H2O
8 UIO-66/SB-Pd 0.01 EtOH
9 UIO-66-NH2/SB-Pd 0.01 Toluene
10 UIO-66/SB-Pd 0.01 MeOH
11 UIO-66/SB-Pd 0.01 H2O
12 UIO-66/SB-Pd 0.01 H2O
13 UIO-66/SB-Pd 0.01 H2O
14 UIO-66/SB-Pd 0.01 H2O
15 UIO-66/SB 0.01 H2O
16 UIO-66-NH2 0.01 H2O

4198 | Nanoscale Adv., 2025, 7, 4194–4204
the presence of micropores, make these type materials very
important candidates for the selective catalytic and adsorption
processes.
3.2. Catalytic activity

Aer a thorough characterization, the performance of UiO-66/
SB-Pd was investigated in the Suzuki coupling reaction. In
order to nd the best conditions for the reaction, the conden-
sation between iodobenzene and phenylboronic acid was
selected as a test model. The optimal conditions were deter-
mined by evaluating the effects of catalyst amount, tempera-
ture, solvent and base. Firstly, the effect of catalyst loading was
investigated in the reaction progress. The best product yield was
achieved using 0.01 g of the UiO-66/SB-Pd catalyst (Table 1,
entry 3). Notably, increasing the catalyst amount to 0.015 g
showed no improvement in the reaction yield, while reducing
the catalyst amount to 0.005 g led to a signicant decline in
yield. The effect of temperature was also investigated. This
demonstrated that temperature signicantly inuences the
reaction, with the highest conversion achieved at 50 °C. Raising
the temperature to 65 °C did not result in any noticeable
improvement in the reaction yield (Table 1, entry 3 vs. entries 5–
7). The effect of various solvents, including H2O, EtOH, toluene,
and MeOH, was also evaluated. The results indicated that H2O
provides the highest yield (97%), whereas toluene gives the
lowest product yield (Table 1, entry 3 vs. entries 8–10). The
reaction sensitivity to different bases was also examined with
the results demonstrating that K2CO3 exhibited the highest
efficiency (Table 1, entry 3 vs. entries 11–13). Importantly, the
reaction did not occur under base-free conditions. To investi-
gate the role of palladium centers in the catalytic process, the
performance of Pd-free UiO-66-NH2 and UiO-66/SB materials
Suzuki reaction

Temperature (°C) Base Time (min) Yield (%)

50 K2CO3 25 47
50 K2CO3 25 97
50 K2CO3 25 97
50 K2CO3 120 —
25 K2CO3 25 55
35 K2CO3 25 69
65 K2CO3 25 97
50 K2CO3 25 86
50 K2CO3 25 55
50 K2CO3 25 88
50 Na2CO3 25 82
50 NaOH 25 67
50 NEt3 25 85
50 — 25 —
50 K2CO3 25 —
50 K2CO3 25 —

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Synthesis of Suzuki products in the presence of UiO-66/SB-Pd

Entry Aryl halide Aryl boronic acid Time (min) Yield (%) M. P. (°C) Reported M. P. (°C)

1 25 97 69–71 68–70 (ref. 58)

2 30 91 69–71 68–70 (ref. 58)

3 45 84 69–71 68–70 (ref. 58)

4 25 96 47–48 46–47 (ref. 58)

5 35 94 47–48 46–47 (ref. 58)

6 50 83 47–48 46–47 (ref. 58)

7 55 88 82–84 83–85 (ref. 26)

8 50 92 109–111 110–112 (ref. 26)

© 2025 The Author(s). Published by the Royal Society of Chemistry Nanoscale Adv., 2025, 7, 4194–4204 | 4199
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Table 2 (Contd. )

Entry Aryl halide Aryl boronic acid Time (min) Yield (%) M. P. (°C) Reported M. P. (°C)

9 30 94 61–63 59–61 (ref. 26)

10 35 95 107–109 106–108 (ref. 26)
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was assessed under identical conditions as the UiO-66/SB-Pd
catalyst (Table 1, entries 15 and 16). Remarkably, the absence
of any conversion or product yield in the presence of these
materials highlights the indispensable role of the Pd species in
the designed catalytic reaction. Thus, the optimal conditions
were determined to be as follows: 0.01 g of UiO-66/SB-Pd cata-
lyst, K2CO3 as the base, H2O as the solvent and a temperature of
50 °C (Table 1, entry 3).

Under optimal conditions (0.01 g of catalyst, H2O, and 50 °
C), the reaction was carried out with various aryl aldehydes to
assess the effectiveness of the UiO-66/SB-Pd catalyst. The results
Fig. 9 Recoverability and reusability of the UiO-66/SB-Pd
nanocatalyst.

4200 | Nanoscale Adv., 2025, 7, 4194–4204
demonstrated that all aryl halides give the corresponding biaryl
products with high to excellent yields (Table 2). As predicted,
the activity of the aryl halides followed the order: aryl iodides >
aryl bromides > aryl chlorides. It is also important to note that
no detectable homo-coupling byproducts were formed under
the applied conditions, further conrming the exceptional
efficiency and selectivity of UiO-66/SB-Pd for the cross-coupling
reaction.

Considering the critical role of catalyst stability in practical
applications, the recyclability of the UiO-66/SB-Pd nanocatalyst
was evaluated. To do this, aer the process was nished, UiO-
66/SB-Pd was isolated and reapplied in subsequent runs using
identical circumstances as the initial run. It was found that the
UiO-66/SB-Pd catalyst is able to maintain its effectiveness for at
least seven runs, demonstrating its exceptional longevity in the
given conditions (Fig. 9).

The stability of the UiO-66/SB-Pd nanocatalyst under the
reaction conditions was assessed by performing a leaching test.
To do this, the catalyst was removed from the reaction mixture
aer achieving a 50% conversion. Then, the reaction of the
catalyst-free residue was le to continue for 60 min under
applied conditions. Notably, the absence of a signicant
increase in conversion conrms the heterogeneous nature of
the designed catalyst. Moreover, the atomic absorption (AA)
spectroscopy showed no leaching of active Pd species in the
residue.

In the next study, the performance of UiO-66/SB-Pd was
compared to other previously reported catalytic systems used in
the Suzuki coupling reaction (Table 3). The results revealed that
our catalyst provides signicant advantages regarding reaction
temperature, catalyst loading, and recyclability. These
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Comparative study of the efficiency of UiO-66/SB-Pd with the former catalysts in the Suzuki reactiona

Entry Catalyst Conditions Time Recovery times Ref.

1 KCC-1-NH2/Pd Cat. (0.5 mol%), EtOH/H2O, K3PO4, 100 °C 4 h 7 59
2 IL@SBA-15-Pd Cat. (0.05 mol%), H2O, K3PO4, TBAB, 60 °C 4 h 4 60
3 Pd@CC-SO3-NH2 Cat. (10 wt%), H2O, K2CO3, 100 °C 2 h 5 61
4 Fe3O4@SiO2/isoniazide/Pd Cat. (0.2 mol%), 50 °C, K2CO3, EtOH–H2O 30 min 7 62
5 Pd@CuBDC/Py-SI Cat. (0.25 mol%), DMF/H2O, K2CO3, 80 °C 1 h 7 63
6 PA–Pd4 Cat. (2 mol%), H2O, K2CO3, 100 °C 1 h 5 64
7 Pd@MC Cat. (2 mol%), EtOH/H2O, Na2 CO3, 80 °C 1 h 3 65
8 g-Fe2O3-acetamidine-Pd Cat. (0.12 mol%), DMF, Et3N, 100 °C 30 min 5 66
9 Pd@[Ni(H2BDP–SO3)2

iPrOH/H2O, K2CO3, 60 °C 4 h 4 67
10 Au-graphene Cat. (1 mol%), H2O, NaOH, 100 °C 4 h 5 68
11 UiO-66/SB-Pd Cat. (0.01 g), H2O, K2CO3, 50 °C 25 min 7 This work

a Abbreviations: KCC-1: brous nano-silica, IL: 1-butyl-3-methylimidazolium hexauorophosphate ionic liquid, BDC: benzene-1,4-dicarboxylate, Py-
SI: pyridyl-salicylimine, PA: polyaniline, MC: mesoporous carbon
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outcomes highlight the high efficiency, stability, and durability
of the designed catalyst.

4. Conclusion

In summary, a novel UiO-66 MOF supported Schiff-base/Pd
complex (UiO-66/SB-Pd) was successfully synthesized using
a post-modication approach. The structural morphology and
physicochemical properties of the material were investigated
using various instrumental techniques. The FT-IR and EDX
investigations clearly showed that the Schiff-base/Pd complex is
effectively immobilized onto the material network. The SEM
image of the designed nanocatalyst revealed well-dened
spherical particles of the nanomaterial. The UiO-66/SB-Pd
catalyst proved to be an efficient and highly recoverable cata-
lyst for the Suzuki coupling reaction, giving the desired prod-
ucts in high yield at short reaction times and under mild
conditions.
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