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Data-efficient fine-tuning of foundational models for
first-principles quality sublimation enthalpies

Harveen Kaur,∗a Flaviano Della Pia,a Ilyes Batatia,b Xavier R. Advincula,a,c Benjamin X.
Shi,a Jinggang Lan,d,e Gábor Csányi,b Angelos Michaelides,a and Venkat Kapila, f ,g‡

Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of
technological applications. However, predicting these quantities at first-principles accuracy – even
with the aid of machine learning potentials – is a challenge that requires sub-kJ/mol accuracy in
the potential energy surface and finite-temperature sampling. We present an accurate and data-
efficient protocol for training machine learning interatomic potentials by fine-tuning the foundational
MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties
of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-
kJ/mol accuracy in the sublimation enthalpies and sub-1 % error in densities at finite temperature
and pressure. Exploiting this data efficiency, we perform preliminary NPT simulations of hexagonal
ice at the random phase approximation level and demonstrate a good agreement with experiments.
Our results shows promise for finite-temperature modelling of molecular crystals with the accuracy
of correlated electronic structure theory methods.

1 Introduction
Molecular crystals form an essential class of materials with tech-
nological applications in industries such as pharmaceuticals1,
electronics2, and agriculture3. Often, molecular crystals exhibit
competing polymorphs, i.e., multiple metastable crystalline
phases with very similar stability (for instance, relative free
energies can be within ≈ 1 kJ/mol error)4. While the most
common experimental probe of the polymorph stability is the
sublimation enthalpy, recent work shows discrepancies across
calorimetry literature for prototypical molecular crystals beyond
1 kcal/mol5 ≈ 4.2 kJ/mol. Hence, there is a need for an indepen-
dent estimation of sublimation enthalpies using first-principles
methods.

Although possible in theory, predicting sublimation enthalpies
with first principles methods is challenging due to the need for
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high accuracy. Reliable predictions require a tolerance of nearly
4.2 kJ/mol for absolute sublimation enthalpies and a tighter tol-
erance of less than 1 kJ/mol for relative sublimation enthalpies4.
As shown by Zen et al. 6 , predicting absolute sublimation
enthalpies of common molecular solids, such as ice, ammonia,
carbon dioxide and aromatic hydrocarbons, consistently to
1 kcal/mol requires computationally demanding “correlated"
electronic structure techniques. These techniques include
quantum fixed-node Diffusion Monte Carlo7, periodic coupled
cluster8 or random phase approximation (RPA) with singles
excitations9,10. Similarly, achieving correct relative stabilities,
accurate to 1 kJ/mol, of prototypical polymorphs of oxalic acid,
glycine, paracetamol, and benzene requires statistical mechanics
incorporating dynamical disorder via thermal effects11,12, ther-
mal expansion13, and anharmonic quantum nuclear motion11–13.

Unfortunately, the computational cost associated with corre-
lated electronic structure theory6 or rigorous quantum statistical
mechanics14, individually or in tandem, remains high. Hence,
sublimation enthalpies are commonly approximated inexpen-
sively with dispersion-corrected density functional theory (DFT)
for a static geometry optimized lattice at zero kelvin15. As a
consequence of their static description, these enthalpies are
compared indirectly with experiments requiring a careful extrap-
olation of measured enthalpies to a static lattice at zero kelvin16.
Unfortunately, this is typically associated with an error-prone ad
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hoc subtraction of zero-point energy corrections calculated using
DFT17. Furthermore, considering the inherent uncertainties in
measured sublimation enthalpies5, there is a need for relative
stabilities that can be unambiguously compared with experiments
at their respective thermodynamic conditions13.

In this context, machine learning potentials (MLPs)18–22

provide an avenue for first-principles-accuracy modelling of
molecular crystals at finite temperature. MLPs have been used
as computationally inexpensive surrogates for first-principles
potential energy surfaces (PES) for ranking putative polymorphs
in increasing order of lattice energies23–25. MLPs have also
facilitated finite-temperature modelling of polymorphs of simple
compounds like hydrogen26 and water27,28, with converged
system sizes and simulation times. More recently, Kapil and
Engel 13 developed an MLP-based framework for predicting
polymorph relative stabilities for paradigmatic molecular crys-
tals containing up to four chemical species, such as benzene,
glycine, and succinic acid. While their approach enables rig-
orous predictions of relative and absolute stabilities at finite
temperatures, it presents a number of limitations arising from
those of conventional MLPs. These include a > kJ/mol error
in out-of-distribution prediction, the need for large volumes of
training data ( >1000 structures per compound), and declining
accuracy and data efficiency with an increasing number of
chemical species. These deficiencies make finite-temperature
stability calculations for generic molecular compounds costly and
prohibitive when using chemically-accurate electronic structure
theory 6.

In this work, we present an accurate and data-efficient MLP-
based approach for finite-temperature modelling and sublimation
enthalpy prediction of given polymorphs of a compound. Us-
ing ice polymorphs as a test bed, we show that using the multi
atomic cluster expansion (MACE) architecture22 supplemented
with fine-tuned training of the foundational MACE-MP-0 model, is
sufficient to reach sub-kJ/mol accuracy with as few as 50 train-
ing structures. In Section 2, we discuss the shortcomings of con-
ventional MLPs and the capabilities of the newer methods with
a focus on MACE and MACE-MP-0, followed by the details of our
protocol, including the dataset generation, training and valida-
tion steps. In Section 3, we apply our approach to crystalline ice
– a prototypical system exhibiting a high degree of polymorphism
with good quality experimental data on densities and sublimation
enthalpies16. We demonstrate the accuracy and generality of our
approach on the excellent agreement of finite-temperature den-
sity and sublimation enthalpies of ice polymorphs directly against
the DFT level. Finally, we explore simulations of ice polymorphs
directly at the RPA level by training on a few tens of periodic total
energy and force calculations. While the results of RPA simula-
tions are sensitive to the orbitals used to expand the independent
particle response function29,30, using hybrid-functional orbitals
yields a good description of the density of ice. In Section 4, we
discuss the limitations of this work and future efforts for direct
finite-temperature simulations for characterizing molecular crys-
tal polymorphs at the accuracy of correlated electronic structure.

2 Theory and methods

2.1 Brief review of machine learning models

MLPs typically represent the total energy of a system as a sum
of atomic energies. Standard models of the atomic energy of a
central atom first preprocess the relative atomic positions of all
atoms up to a cutoff into so-called “atomic representations"31,32.
Subsequently, the representations are used as inputs to a regres-
sion model31,32, such as a Gaussian process19, and artificial18

or deep neural networks33, trained on total energy of the system
and its gradients such as atomic forces and stress tensors34,35.
Typically, these representations are n-body correlation functions
(defined for every n-tuple of atom types and typically truncated
at n=2 or 3) of relative atomic positions which encode rotational,
permutational, and inversion invariances20,36.

Standard architectures, such as the Behler-Parrinello neural
network (BPNN) framework35, Gaussian Approximation Poten-
tial19, SchNet37, DeepMD33, and Moment Tensor Potential38,
can be constructed by mixing and matching various flavours
of two- or three-body atomic representations and regression
models. Despite their success, standard models have two main
limitations. First, the truncation of body order leads to the
incompleteness of the atomic representations, limiting their
accuracy and smoothness39. The accuracy can be systematically
improved, but including higher body order representations
involves a much higher computational cost and labour38,40,41.
Second, the number of representations scales combinatorially
with the number of chemical species as n-body representations
are defined for every n-tuple of atomic species. Hence, for a
given accuracy cutoff, standard MLPs exhibit an exponentially
increasing cost with an increasing number of chemical species.
Similarly, for a fixed cost, these models have a steeply worsening
accuracy with increasing chemical species.

Newer MLPs such as NequIP21, MACE22, and PET42, im-
plemented as Euclidean graph neural networks43, address
these issues by incorporating (near) complete atomic rep-
resentations20. In addition, they exploit a learnable latent
chemical space21,44,45 for smoothly interpolating or extrapolat-
ing representations across chemical species at O(1) cost without
compromising accuracy46. Specifically, in the MACE architecture,
the initial node representations of the graph neural network are
based on the atomic cluster expansion20 up to a selected body
order (typically n = 4). MACE systematically constructs higher
body-order representations in terms of the output of the previous
layer and an equivariant and high body-order message passing
scheme45. Hence, increasing the number of layers or body order
of the message passing enables learning correlation functions of
arbitrary order. However, thanks to its message passing scheme,
MACE can efficiently construct high body-order representations
with a simple architecture (e.g., the default parameters of MACE
with just two layers give access to a body order of 13)47. Finally,
embedding chemical information in a learnable latent space48,
MACE displays an O(1) computational cost with the number of
chemical species.
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Exploiting these capabilities for datasets with a large number
of elements, Batatia et al. 49 have recently developed a so-called
MACE-MP-0 foundational MLP model trained on a diverse Mate-
rials Project dataset. Specifically, MACE-MP-0 is trained on the
MPTrj dataset, comprising 1.5 million small periodic unit cells of
inorganic (molecular) crystals with elements across the periodic
table. The training set includes total energies, forces and stress
tensors estimated at the PBE(+U) level. Trained for elements
across the periodic table, the MACE-MP-0 model is capable of
out-of-the-box usage for general materials with qualitative
(and sometimes quantitative) PBE accuracy. Other classes of
foundational MLPs exist, such as CHGNET50 and M3GNet51, based
on materials project datasets and the ALIGNN-FF50 based on the
JARVIS-DFT dataset. Unlike MACE-MP-0, these models are based
on three-body atomic representations.

While MACE-MP-0’s accuracy is insufficient for studying molec-
ular crystal polymorphs, its parameters may provide a starting
point for training system-specific models at a different level of
theory. Considering that the pre-trained n-body atomic represen-
tations are valid for generic materials, using the MACE-MP-0 pa-
rameters as a starting point for fine-tuning may require less data
and computational time compared to training a new model from
scratch.

2.2 Details of our framework

2.2.1 The protocol

We propose a simple pipeline for studying the physical properties
of a given polymorph using MLPs at a desired thermodynamic
state point (temperature T and pressure P). It includes the fol-
lowing steps.

1. Dataset Sampling: We perform a short first-principles
molecular dynamics (MD) simulation in the NPT ensem-
ble. To ensure this step is inexpensive, we select a general-
ized gradient approximation (GGA) DFT level of theory and
coarsely converged electronic structure parameters and sim-
ulation lengths up to 5 ps.

2. Dataset Generation: We randomly select 500 structures
to perform total energy, force, and stress calculations with
tightly converged parameters. We collect total energies,
forces and stress tensors as target properties, thereby gen-
erating a dataset of 500 structures, energy and its gradients.
The validation set includes 100 randomly selected struc-
tures. The remaining structures are split into training sets of
increasing sizes with 50, 100, 160, 200, 320 and 400 struc-
tures. The larger sets include structures from the smaller
ones.

3. Model development and validation: We train two types of
models for each training set – a MACE model trained from
scratch and a MACE model fine-tuned from MACE-MP-0 in
which we use the initial parameters from the foundational
models as a starting point. We compare learning curves by

plotting the root mean square errors (RMSEs) of the total en-
ergies and the atomic force components, thereby identifying
the training set sizes and the training methods that deliver
sub-kJ/mol accuracy.

4. Model testing against DFT: We perform an additional out-
of-distribution test in the NPT ensemble sampled by the
MLPs and compare it against the DFT ensemble. We study
the convergence of the average potential energy and density
from NPT simulations as a function of the size of the train-
ing set. We obtain a converged DFT reference for the aver-
age potential energy and density by performing DFT single
point energy calculations on 100 uniformly stridden config-
urations. We use the difference between MACE and DFT en-
ergies to estimate the averages at DFT level using statistical
reweighting. We identify the training set sizes that deliver
good accuracy against the DFT reference ensemble.

The models from step 4 (or 5) can be used for production simu-
lations in the NPT ensemble with larger simulation sizes and long
simulation times. The same procedure is used for training the
model at the RPA level, replacing DFT with RPA level total energy
and force calculations.

2.2.2 Computational details

Systems and Thermodynamic conditions: We validate our
pipeline on the densities and sublimation enthalpies of ice poly-
morphs Ih, II, VI and VIII at 100 K and 1 bar. We use simulation
cells with 128 molecules for ice Ih, 96 molecules for ice II and
80 molecules for ice VI and VIII. These simulation cells ensure
lattice parameters greater than 10 Å. We employ the revPBE
functional with (zero-damping) D3 dispersion correct due to its
good performance against diffusion Monte Carlo for ice phases52.

Dataset Sampling: We use the CP2K code53 for efficient sam-
pling of the dataset via ab initio molecular dynamics simulations.
The electronic structure is described using Kohn-Sham density
functional theory with a plane-wave basis set truncated at an
energy cutoff of 500 Rydberg, TZV2P-GTH basis sets54, GTH-PBE
pseudopotentials55, and Γ-point sampling of the Brillouin zone.
The simulations are carried out in the NPT ensemble using an
isotropic cell at a constant pressure of 1 bar and 100 K.

Dataset Generation: We use the VASP code56–58 to perform
single-point energy calculations at revPBE-D3 level with SCF
parameters from Ref. 52. Our over-conservative parameters
allow us to minimize the amount of noise in our training set.
We used hard PAW (PBE) pseudopotentials59,60 with an energy
cutoff of 1000 eV, Γ-point with supercells lattice parameters
exceeding 10 Å, and a dense FFT grid (PREC=High).

We also perform total energy and force calculations at the
RPA level. We use the EXX + RPA@PBE0(ADMM) approach,
which computes exact exchange (EXX) and the RPA correlation
energy based on PBE0 orbitals estimated within the auxiliary
density matrix method (ADMM)61. We employ the sparse
tensor-based nuclear gradients of RPA 62 as implemented in
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CP2K. All calculations use the triple-zeta cc-TZ and RI_TZ basis
sets alongside GTH-PBE0 pseudopotentials. The Hartree-Fock
exchange contribution to the SCF and the Z-vector equation is
calculated within the ADMM approximation.

Model training (from scratch): We use two MACE layers,
with a spherical expansion of up to lmax = 3, and 4-body messages
in each layer (correlation order 3). We use a self-connection for
both layers, a 128-channel dimension for tensor decomposition
and a radial cutoff of 6 Å. We expand the interatomic distances
into 8 Bessel functions multiplied by a smooth polynomial cutoff
function to construct radial features, which in turn fed into a
fully connected feed-forward neural network with three hidden
layers of 64 hidden units and SiLU non-linearities. A maximal
message equivariance of L = 2 is applied. The irreducible
representations of the messages have alternating parity (in e3nn
notation, 128x0e + 128x1o + 128x2e). The version of software
used to perform the from-scratch training corresponds to the
0c9ff32b4c4bf50a02b07931c65b3325b4bb64ee commit of the
GitHub repository https://github.com/ACEsuit/mace with
CUDA 11.7.

Model training (fine-tuned from MACE-MP-0): We fine-tune
the large MACE-MP-049 model by continuing training from the
last checkpoint and, therefore, using the same hyperparameters.
A self-connection is used only at the first layer. The remaining
parameters are the same as the model trained from scratch.
A development version of the fine-tuning code was used with
CUDA 12.1, which has been merged into the MACE 0.3.4 release.

Model testing: We use the i-PI code63 to perform NPT MD
simulations using an ASE64 as a client for calculating MACE
total energy, forces and stress. We perform 50 ps long simula-
tions employing a timestep of 0.5 fs. We use the fully flexible
Martyna-Tuckerman-Tobian-Klien65 barostat implementation
with a relaxation time of 1 ps. For efficient sampling, we use
an optimally damped generalized Langevin equation thermostat
for the system and the lattice degrees of freedom66. We sample
positions, potential energies, and densities every 100 MD steps.

3 Results and Discussion

3.1 Performance on validation set

We begin by evaluating the accuracy and data efficiency of
the MACE architecture and the “from scratch" and “fine-tuned"
training protocols. We perform this test on the ice Ih phase and
check whether the MACE models deliver sub-kJ/mol accuracy on
the validation set.

As shown in Fig. 1(a), we report RMSEs of the energy per
molecule and the force components on H and O atoms as a
function of the size of the training set. A MACE model trained
from scratch reports an energy RMSE of nearly 0.01 kJ/mol with
the smallest training set comprising 50 structures. On an absolute
scale, this error is extremely low. However, it corresponds to
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Fig. 1 Root mean square errors for ice Ih on the validation set as a
function of the number of training structures. Panel a, b, and c re-
spectively report the error in the energy per water molecule, the mean
force on hydrogen atoms, and the mean force on oxygen atoms. We
also report relative RMSEs that correspond to the % error relative to
the standard deviation of the quantities in the validation set. Red, blue
and green circular markers correspond to errors for MACE models trained
from scratch, MACE models fine-tuned from the MACE-MP-0 model, and
a Behler-Parrinello Neural Network Potential, respectively. Coloured lines
are a guide for the eye.

10% of the mean energy variation in the validation set, which is
nearly the per atom standard deviation of the potential energy at
100 K. With 400 structures, i.e., the entire dataset, we report an
energy RMSE of around 0.001 kJ/mol. This error corresponds to
around 1% of the validation set standard deviation.

We next study the effect of fine-tuning the parameters of the
MACE-MP-0 model, which implies starting the training from the
last checkpoint of the foundational model. As seen in Fig. 1(a),
fine-tuning improves the accuracy of the models, compared to
training from scratch, for small datasets containing fewer than
160 structures. With just 50 training structures, a fine-tuned
MACE model reports an energy RMSE that corresponds to around
2% of the validation set standard deviation. For training set
sizes, beyond 160 structures we see nearly identical performance
of the from scratch and fine-tuned models on the energy RMSE.

The RMSEs of the force components on H and O atoms paint
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Fig. 2 Distribution of density and volume in the training and target
ensembles. Panels a and b respectively show the histograms of the den-
sity and the potential energy of ice Ih in the DFT and the training set
ensembles. The training set histograms are estimated for 100 configura-
tions randomly sampled from a 5 ps long first-principles MD simulation
with unconverged DFT parameters. The potential energies are subse-
quently reevaluated with converged DFT parameters. The DFT ensemble
histograms are estimated via statistical reweighting using configurations
from a 5 ps fine-tuned MACE simulation trained on 100 structures (see
main text). For clarity, we realign the energies to the median of the DFT
ensemble energies.

a similar picture. The from-scratch MACE models report a small
RMSE of nearly 2 mev/ with just 50 structures, nearly 1% of the
validation set standard deviation, with a systematic reduction
in error with increasing training data. On the other hand,
fine-tuning the MACE-MP-0 model results improved accuracy and
data efficiency with nearly 1 meV/ RMSE with 50 structures
and sub meV/ RMSE with over 200 structures. We observe
improvements in force RMSEs across the full range of training
set sizes.

To contextualize these RMSEs, we also report RMSEs obtained
with a standard 2- or 3-body atomic-representation-based model.
We select the BPNN35 architecture which has been widely used
for simulating the bulk67, interfacial68 and confined phases of
water69. We observe nearly order-of-magnitude higher energy
and force RMSEs with the BPNN scheme, with indications of sat-
urating errors with 400 training structures. Although on an abso-
lute scale, the BPNN model reports small energy RMSE, it corre-
sponds to saturation at around 10% relative error. The saturation
in the RMSEs is likely due to a ceiling on learning capacity due
to incomplete atomic representations. We note the much higher
data efficiency of the MACE models, which exhibit a higher accu-
racy even with an order of magnitude and fewer training data.

3.2 Performance at finite temperature and pressure
As shown in Fig. 2, the configurational ensemble used to gen-
erate the training and validation datasets deviates significantly
in energy and volume distributions from that of revPBE-D3 with
converged electronic structure parameters. The configurations
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Fig. 3 Finite-temperature testing for ice Ih as a function of the volume
of training data. Panels a and b respectively show the thermodynamic
average of the potential energy and density in the NPT ensemble at
1 bar and 100K. Circular markers in red and blue respectively correspond
to data generated by MACE models trained from scratch and MACE
models fined-tuned from the MACE-MP-0 model. Coloured lines are a
guide to the eye. The black lines correspond to DFT thermodynamic
averages estimated by statistical reweighting using configurations from
a fine-tuned MACE model. The grey region corresponds to a 1σ error
statistical error estimated from block averaging.

used for training correspond to denser structures, with shorter
interatomic distances and, consequently, higher potential ener-
gies compared to the DFT ensemble. Hence, the RMSEs in Fig 1
only reflect the quality of regression in the training ensemble.

To assess model performance at finite thermodynamic condi-
tions, we perform fully flexible NPT simulations at 100 K and
1 bar for each model. We found the BPNN NPT simulations to
be unstable due to overfitting on the training ensemble, hence
we only present results for the MACE models. We report the
thermodynamic average of the potential energy and the density
as a function of the size of the training set in Fig. 3. Exploiting
MACE’s high fidelity, we perform statistical reweighting to calcu-
late the DFT reference of the average potential energy and the
density. For this purpose, we use the trajectory sampled by the
fine-tuned MACE trained on 100 structures. The DFT references
allow us to test MLPs against their DFT in their thermodynamic
ensembles directly.

As shown in Fig. 3, the from-scratch MACE models generalize
well to the true thermodynamic ensemble displaying sub-kJ/mol
error for the average potential energy at 100 K and 1 bar.
Despite these small errors, we note that the from-scratch MACE
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Polymorph density [g/cm3] sublimation enthalpy [kJ/mol]
MACE DFT % Error MACE DFT Error

Ih 0.922 ± 0.001 0.922 ± 0.001 0.012 ± 0.161 -58.208 ± 0.089 -58.214 ± 0.089 0.006 ± 0.126
II 1.200 ± 0.002 1.190 ± 0.009 0.896 ± 0.764 -57.055 ± 0.091 -56.814 ± 0.145 0.241 ± 0.0172
VI 1.329 ± 0.001 1.330 ± 0.006 0.083 ± 0.461 -55.225 ± 0.091 -55.215 ± 0.114 0.010 ± 0.146

VIII 1.569 ± 0.001 1.565 ± 0.003 0.262 ± 0.196 -56.063 ± 0.107 -55.719 ± 0.143 0.349 ± 0.179

Table 1 Physical properties of ice polymorphs at 100 K and 1 bar. Densities and sublimation enthalpies of ice Ih, II, VI, and VIII are estimated in the
NPT ensemble for the MACE potentials and the underlying DFT level. The discrepancy of MACE with respect to DFT is expressed as a percentage
error. Uncertainties correspond to 1 σ standard errors of the mean.

thermodynamic averages deviate from the DFT reference at
50 structures, yielding a statistically significant agreement for
models trained with more than 200 structures. These small
errors lead to significant disagreements in the density (a quantity
that is much harder to converge compared to energy or forces as
per empirical evidence70). We require training on 400 structures
to converge the density to the DFT reference within statistical
error.

With the fine-tuned models, we observe a remarkable perfor-
mance against the DFT ensemble. Even for the smallest training
set comprising 50 structures, we observe a quantitative agree-
ment in the density and the average energy. Inspired by this re-
sult, we trained new fine-tuned models with 1, 2, 10, and 20
structures and studied their performance on density and the av-
erage energy in the NPT ensemble. With just 10 structures, the
properties obtained with the fine-tuned models are within 1%
(0.09 g/cm3) of the DFT density and 0.5 kJ/mol of the DFT en-
ergy. These tests suggest the potential of our approach for finite-
temperature modelling of molecular polymorphs with a few tens
of training structures. This is a marked improvement over our
previous work in Ref.13, which required over a few hundred or
thousands of structures and differential learning for stable NPT
simulations.

3.3 DFT-level sublimation enthalpies and physical proper-
ties of ice polymorphs

The fine-tuned MACE model only requires up to a hundred
training structures for ice Ih for first-principles-quality NPT
simulations. We next check if the observed data-efficiency for ice
Ih is valid for other polymorphs. For this purpose, we predict the
sublimation enthalpy and density of ice II, VI, and VIII at finite
thermodynamic conditions and check agreement with the DFT
ensemble.

For each polymorph, we train a fine-tuned MACE model on
100 structures and perform NPT simulations at 100 K and 1 bar
to estimate the density and the average potential energy. To
estimate the sublimation enthalpy, we further train a fine-tuned
MACE model on 200 structures of a water molecule providing
a gas phase reference enthalpy at 100 K and 1 bar. The training
set was developed in the same way as for the ice polymorphs
with initial NV T sampling using CP2K at revPBE-D3 level and
converged DFT calculations on randomly sampled structures
using VASP. Finally, for an apples-to-apples comparison, we

compare with DFT-level densities and sublimation enthalpies
calculated using statistical reweighting.

As shown in Table 1, the densities and sublimation enthalpies
estimated with MACE at 100 K and 1 bar agree remarkably with
the reference DFT estimations up to the statistical error. In most
cases, the discrepancies between MACE and DFT are within the
1σ statistical error of DFT estimations. In all the cases, the agree-
ment for the sublimation enthalpy and the density are within
0.5kJ/mol and 1% respectively. These results demonstrate the
data efficiency and generalizability of the fine-tuned MACE mod-
els to the full NPT ensemble of energy and volume despite being
trained on a skewed ensemble.

3.4 Random phase approximation level physical properties
of ice Ih in the NPT ensemble

The sub-kJ/mol accuracy of the fine-tuned MACE models at
finite thermodynamic conditions suggests that they are capable
of learning at the accuracy of correlated electronic structure
theory levels for relative and absolute sublimation enthalpies.
In addition, the low data requirement of the fine-tuned MACE
models makes them practically viable for training on small
datasets generated at computationally demanding correlated
electronic structure theory level.

To explore this possibility, we consider modelling the properties
of ice Ih at the RPA level. We consider this approach, as there
exists an efficient implementation in CP2K62,71. Additionally,
there exist tests for zero Kelvin calculations on ice Ih with both
Gaussian Type Orbitals in CP2K, which compare well with those
using plane waves in VASP29. It is to be noted that the RPA corre-
lation energy estimated with PBE orbitals leads to underbinding
and, thus, an underprediction of the density, while Hartree-Fock
orbitals lead to overbinding and, thus, an overprediction of the
density29. Following the suggestion of Macher et al. 29 , we used
hybrid functional orbitals from PBE0 estimated with the ADMM
approximation, which we refer to as EXX + RPA@PBE0(ADMM).
For brevity, we will refer to this level of theory as RPA level
unless stated otherwise. We trained a fine-tuned MACE model
at this level for ice Ih using 75 periodic total energy and force
calculations.

We found that training at the RPA level was more challenging
than at the DFT level. Our training set resulted in an energy
mean absolute error (MAE) of 0.03 kJ/mol and a force MAE of
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24.8 mev/, which is significantly higher than the energy MACE of
0.001 meV/atom and force 1 mev/ MAE on the DFT training set.
This is due to the noise in the forces resulting from the ADMM
approximation, which reduces the computational cost associated
with RPA-level calculations. ADMM also leads to a spurious
offset in the total energy, which doesn’t allow us to estimate
sublimation energies but, fortunately, doesn’t significantly affect
structural properties30. A full study of water at the RPA level
with comprehensive convergence tests without the auxiliary
density matrix method will be presented elsewhere.

Despite the noisy training set, we were able to report stable
NPT simulations at RPA level at 100 K and 1 bar, as shown in
Fig. 4. However, due to the high cost of single-point calculations,
we were unable to perform statistical reweighting for direct
validation. Nonetheless, the accuracy afforded by our simulation
allowed us to compare meaningfully with experiments.

We first study the density of ice at 100 K, which is 0.934
g/cm3 as observed in experiments72. Macher et al. 29 ’s calcu-
lations show that the exact exchange and RPA correlation using
(delocalized) PBE orbitals lead to an underpredicted density
of around 0.910 g/cm3, while using exact exchange computed
using (localized) Hartree-Fock orbitals and RPA correlation using
PBE orbitals overestimates the density to around 0.955 g/cm3.
Consistent with these results, our RPA calculations based on
exact exchange and correlation using PBE0(ADMM) orbitals
result in a density of 0.939 g/cm3, which is only marginally
higher than the experimental density. Our RPA results also show
an improvement over revPBE-D3 density of 0.922 g/cm3. The
missing quantum nuclear effects in our RPA-level simulations
explain the remaining (small) discrepancy between the NPT and
experimental densities. We were unable to confirm this directly
as our path integral simulations were not stable. However, we
were able to confirm that the instability of the simulations is
linked to the noisy forces by performing path integral simulations
using our revPBE-D3 level fine-tuned model. As can be seen in
Fig. 4(b), we report stable simulations with quantum nuclear
effects despite not training on configurations generated using
path integral simulations. Quantum nuclear effects marginally
reduce the density of ice Ih, nearly to the same extent as the
overestimation of the classical density estimated at RPA level
compared to experiments.

Finally, with access to stable trajectories, we compared the
structure of ice Ih with radiation total scattering experiments at
220 K73 by calculating the oxygen-oxygen pair correlation func-
tion. Although our potential is trained on configurations corre-
sponding to a 100 K and 1 bar ensemble, our models can general-
ize to higher temperatures. Unfortunately, due to the noisy RPA-
level forces, as diagnosed by stable classical and path-integral
simulations in the revPBE-D3 NPT ensemble at 220 K in Fig. 4(d),
we report unstable simulations in the NPT ensemble at 220 K and
1 bar. On the other hand, we can perform stable simulations in
the NV T ensemble at 220 K and compare the predicted pair cor-
relation function with the experiment in Fig. 4(c). We report an

overall good agreement with the experimental pair correlation
function and with the revPBE-D3, modulo the over-structuring of
the first and second peaks. Although quantum nuclear motion
at 220 K is expected to broaden the first and second peaks but
not sufficiently enough to explain the extent of static disorder in
experiments. The non-zero probability in the 3− 4 range could
arise from defect migration at the grain boundaries in the power
sample. Alternatively, the disagreement for short distances (or
large reciprocal space vectors) could be an artefact of the empiri-
cal potential structure refinement74 used to analyze experimental
data.

4 Conclusions
In summary, we explore the accuracy, extrapolation power,
and data efficiency of the MACE architecture for predictive
finite-temperature sublimation enthalpies of ice polymorphs.
In doing so, we present a simple workflow for first-principles
quality studies of a polymorph of a molecular compound at a
given temperature and pressure. First, we perform a short GGA
level first principles NPT MD simulation with coarse convergence
parameters. Second, we randomly sample configurations and
perform single-point total energy, force, and stress calculations
with converged parameters to determine the appropriate choice
of electronic structure theory. Third, we fit MACE MLPs and
perform simulations in the NPT ensemble to calculate the density
and the average potential energy. To estimate the sublimation
enthalpy, we follow the same steps for the gas phase molecule.
Finally, as an optional step, we perform DFT calculations on the
NPT sampled configurations to estimate DFT-level thermody-
namic quantities using statistical reweighting for direct testing.

Training a MACE model by finetuning the parameters of the
pre-trained MACE-MP-0 model, as opposed to training it from
scratch, results in improved accuracy and data efficiency. Only
50 to 100 training structures sampled for a given T,P condition
are needed to achieve sub-kJ/mol and sub 1 % agreement on the
average energy and density, respectively, against the reference
DFT NPT ensemble. Exploiting the accuracy and low data re-
quirement of our approach, we develop an RPA-quality machine
learning model for simulating ice Ih in the NPT ensemble. Our
RPA simulations demonstrate an overall good agreement with
the experimental density and pair-correlation functions and
an improvement beyond DFT. At the same time, the noise in
RPA training forces compromises the MLP’s data efficiency and
robustness compared to the DFT level. Our work highlights
the importance of tightly converged electronic structure theory
training data, particularly at correlated levels.

We conclude by discussing some limitations that need to be ad-
dressed to make our approach applicable to more complex molec-
ular crystals, such as the CSP blind test candidates75. For in-
stance, our initial data generation step, which uses first-principles
MD, took around 24 hours on 8 nodes of an Intel Xeon E5-2690
v3 @ 2.60GHz (12 cores). However, this step could prove ex-
pensive for larger or more complex molecular crystals. Hence,
future work will explore less expensive sampling protocols, rang-
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Fig. 4 RPA-level simulations of ice Ih. Panel a shows the time series of the density of ice Ih from a classical NPT simulation at 100K and 1 bar with
a MACE model trained at EXX + RPA@PBE0(ADMM) level. Panel b shows the same quantity but with classical and path-integral NPT simulations
using the MACE model trained at the revPBE-D3 level. The black dashed lines correspond to the experimental density 72 at 100 K and 1 bar. Panel c
shows the oxygen-oxygen pair correlation function of ice Ih at 220 K estimated from an RPA level MACE NV T simulation. Panel d reports the same
quantity but with classical and path-integral NPT simulations at 220 K and 1 bar using the MACE model trained at revPBE-D3 level. The black lines
correspond to the experimental pair correlation function 73 measured at 220K and 1 bar.

ing from MD using the MACE-MP-0 model or a random structure
search sampling76. Second, our approach could require a sig-
nificantly large volume of training data for systems with a large
number of polymorphs, as we generate training data and mod-
els separately for each polymorph. Hence, we will study the data
efficiency associated with pooling training configurations to de-
velop a single model for all polymorphs. Finally, our approach
currently doesn’t include quantum nuclear effects in sublimation
enthalpies, which could prove important for obtaining quantita-
tive agreement with experiments. With these developments,
we foresee predictive sublimation enthalpy and physical property
predictions for molecular crystals at the accuracy of correlated
electronic structure and path integral molecular dynamics.
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