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How machine learning can accelerate
electrocatalysis discovery and optimization

Stephan N. Steinmann, *a Qing Wang a and Zhi Wei Seh *b

Advances in machine learning (ML) provide the means to bypass bottlenecks in the discovery of new

electrocatalysts using traditional approaches. In this review, we highlight the currently achieved work in

ML-accelerated discovery and optimization of electrocatalysts via a tight collaboration between

computational models and experiments. First, the applicability of available methods for constructing

machine-learned potentials (MLPs), which provide accurate energies and forces for atomistic

simulations, are discussed. Meanwhile, the current challenges for MLPs in the context of electrocatalysis

are highlighted. Then, we review the recent progress in predicting catalytic activities using surrogate

models, including microkinetic simulations and more global proxies thereof. Several typical applications

of using ML to rationalize thermodynamic proxies and predict the adsorption and activation energies are

also discussed. Next, recent developments of ML-assisted experiments for catalyst characterization,

synthesis optimization and reaction condition optimization are illustrated. In particular, the applications

in ML-enhanced spectra analysis and the use of ML to interpret experimental kinetic data are

highlighted. Additionally, we also show how robotics are applied to high-throughput synthesis,

characterization and testing of electrocatalysts to accelerate the materials exploration process and how

this equipment can be assembled into self-driven laboratories.

Introduction

In recent years, machine learning (ML) has become a buzz
word, covering distinct realities,1 sometimes simply rebranding
established methods such as (multi-)linear regressions, while
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in other cases ML enables operations through novel mathema-
tical tools. At the same time, electrocatalysis has also been
touted as a promising approach to sustainably produce impor-
tant fuels and chemicals (e.g., hydrogen, hydrocarbons, and
ammonia).2 The traditional trial-and-error approach of devel-
oping new electrocatalysts is time-consuming and only samples
a small chemical space. ML, being data-driven in nature, can
learn continuously from experience to accelerate the discovery
and to optimize processes.1 This has the potential to signifi-
cantly shorten the time it takes to bring new electrocatalysts
from the lab bench to a commercial application.

In this review, we focus on the impact of ML on the under-
standing and development of heterogeneous electrocatalysts,
with examples preferentially taken from the very recent litera-
ture. Our aim is to provide a primer in the currently feasible
acceleration of the discovery and optimization of electrocata-
lysts via a tight collaboration between computational models
and experiments. We do not provide an actual introduction into
ML, which can be found elsewhere,2 but we draw the reader’s
attention to the danger of overfitting when using ML with small
datasets, where ‘‘small’’ is relative to the number of (hyper-)
parameters of the ML model.3 Instead, we aim to give an
overview of the different roles ML can play in the activities of
all kinds of researchers in heterogeneous electrocatalysis, from
theoreticians to experimentalists. As such, we do not focus on a
particular method, material, or a single reaction (e.g., ML for
theoretical chemists,4 for MXenes5 or for hydrogen evolution6).
The focus of this review on electrocatalysis is motivated by the
comparatively underdeveloped understanding of the atomistic
origins of the observed catalytic activities compared to hetero-
geneous catalysis in the gas phase. This lack of rational under-
standing is related to the complexity of the reaction
environment and the challenges to achieve detailed character-
izations of the functional (operando) interface. Despite this

focus on electrocatalysis, most of the discussed approaches
are also applicable to thermal catalysis.

Our interest is two-fold: First, how can ML help to gain a
reliable, detailed understanding of the nature and working
principles of a given electrocatalyst? And second, how can ML
accelerate the discovery of stable, more active electrocatalysts?
While the two questions can be related in some instances, the
examples discussed below demonstrate that there is not neces-
sarily a direct link: understanding why Pt is such a good
hydrogen evolution reaction (HER) catalyst in acidic solutions
does not magically lead to propositions of excellent HER
catalysts in alkaline solutions. Similarly, having discovered that
Cu possesses a unique CO2 reduction reaction selectivity does
not bring us closer to understanding the underlying reasons. In
fact, there is no reason to expect ML to make a solid link
between understanding, prediction, synthesis and operation-
condition optimization. In other words, ML is not a panacea
that will completely revolutionize chemistry. Nevertheless, it is
clearly a powerful tool and our aim is to point out the areas
connected to electrocatalysis where we currently see major
impacts of ML and expect this trend to continue, as summar-
ized in Fig. 1.

We start our review with the impact of ML on simulations at
the atomic scale. This scale is critical for a deep understanding
of the working principles (reaction mechanism and structure–
property relationships) of electrocatalysts. In this context, ML
essentially represents an approximate solution to the Schrödin-
ger equation and could be seen as an alternative to density
functional theory (DFT) computations. As we discuss in detail
below, ML is actually not a replacement for DFT, but is a
promising and popular approach to mimic DFT computations
to accumulate thermodynamically relevant statistics of well-
defined systems for which the ML model has been trained
based on the indispensable DFT computations. In this sense,
ML is closer to empirical force fields than DFT. Note that we do
not cover ML techniques that aim at speeding up the (static)

Fig. 1 Schematic and summary of the impact of ML on electrocatalyst
development and optimization as discussed in this review.
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DFT computations themselves, as they have been discussed
earlier by us.7

Next, we move one step closer to the specificities of electro-
catalysis: instead of investigating the atomistic mechanism,
one can identify surrogate models that link simple-to-obtain
‘‘descriptors’’ or proxies to electrocatalytic activity. This activity
can take the form of microkinetic simulations or more approx-
imate variants thereof. This topic is very popular among
computational chemists, as it allows performing in silico
screening of hypothetical materials. Here, the main caveat
stems from the (necessary) simplifications: disregarding feasi-
bility and stability (especially under the electrocatalytic reaction
conditions) leads more often than not to unrealistic
propositions.

The third aspect which will be scrutinized is the intimate
interplay between ML and experiments. This covers several
application domains of ML: on the one hand, ML in the sense
of data analysis can be exploited to extract the maximum
information from experimental characterization methods, be
it kinetic signatures of the catalysts to gain insight into the
mechanism, or spectroscopic and microscopic data to recon-
struct an atomic representation of the (active) material. On the
other hand, ML also lends itself perfectly to a modern incarna-
tion of design of experiments in order to optimize synthesis
and operation conditions.

Finally, we discuss automated and computer-controlled
(robotic) laboratory equipment, which can be coupled to the
ML-driven design of experiments. Indeed, such a hardware
infrastructure is system specific to some extent, but over the
last couple of years, general pieces of equipment have been
developed that can be integrated into the human-time efficient
ML-assisted development of heterogeneous (electro-)catalysts.
It is our strong belief that such ‘‘autonomous’’ laboratories will
give rise to a new subdiscipline in chemistry: liberated from the
necessity to master the practicalities of experimental chemistry
and from the constraints of owning state-of-the-art lab equip-
ment, certain chemists will be able to get specialized in coming
up with creative ways to explore chemical space and reaction
conditions for numerous applications in electrocatalysis and
beyond. Of course, this vision relies on heavy investments by
states, universities and companies into the development and
installation of the required infrastructure in analogy with high-
performance computing facilities. As a matter of example, such
a platform that will be accessible for various research groups, is
currently being developed under the SwissCat+ initiative.8

Machine-learned approximations to
the energies of atomistic systems

DFT is the well-established workhorse for the atomistic under-
standing of electrocatalytic systems,9 but comes with a rather
high computational cost. This motivates the development and
usage of more efficient methods, especially in view of the size of
the electrocatalytic interface (thousands of atoms), its dynamics
(at least nanoseconds) and even the sheer number of catalysts

one would like to computationally assess. In this context, ML is
currently best seen as a way of constructing system-specific
‘‘force fields’’, i.e., mathematical functions that output the
system energy as a function of the positions and nature of
the atoms. These functions are commonly called machine-
learned potentials (MLP) and are many orders of magnitude
faster than DFT. Of course, other levels of theory can be used
instead of DFT if accumulating sufficient training data is
feasible. As an example, we mention ANI-1ccx,10 which achieves
near-coupled-clusters singles, doubles and perturbative triples
accuracy for organic molecules via a neural network, and for the
condensed-phase the random-phase approximation has been
exploited to go beyond DFT accuracy with an MLP.11 There are
several approaches to constructing MLPs, but kernel ridge or
Gaussian process regression12 and neural networks are most
popular.13 While the former is easier to train, the latter is
mathematically even more flexible, not imposing any physical
constraints on the structure–energy relationship. It is worth
noting that for a given accuracy of the MLP, the computational
cost to use it can vary by two orders of magnitude depending on
its mathematical form.14 Similarly, the increase in the compu-
tational cost (related to the number of parameters) when
adding more and more chemical elements depends on the
architecture of the MLP, but more than about four elements is
currently at the limit of feasibility for MLPs that cover large
reaction phase-spaces. The common MLPs are ‘‘short-sighted’’,
i.e., the energy of the system is the sum of energies of each
atom, with each atomic energy depending only on the local
(t4 Å) environment. Concurrently, these MLPs are ‘‘brute
force’’, i.e., do not contain any physical knowledge in their
functional forms. However, there is a current trend towards
‘‘physics-based’’ MLPs. These more advanced functional forms
have the advantage that the short-range and long-range inter-
actions are separately accounted for, instead of neglecting the
latter altogether.13,15

Independent of the architecture of the MLP, it is the training
of the MLP that is most time-intensive as a user: since MLPs are
system specific, for each application a dedicated training set
needs to be constructed. The size of the training set is on the
order of 103–4 DFT energy evaluations and the quality of the
MLP is at least as dependent on the representative diversity of
the training set as it is on the architecture of the MLP:
Geometries that deviate too much from the training set will
have completely wrong energies and forces. Since the flexibility
and absence of physical constraints make MLPs unreliable for
extrapolation, they tend to only work well for the systems and
reactions they have been trained for. To give a hypothetical
example: If one trains an MLP on liquid water, the corres-
ponding MLP certainly cannot describe the combustion of O2

and H2 to yield H2O nor the decomposition of H2O2. It is also
unlikely to properly describe excess or defects of protons, or the
self-ionization of water. Nevertheless, the MLP will, of course,
provide an energy for such systems: after all, it is trained for
systems containing any numbers of H and O atoms. However,
this energy will be meaningless. To adequately describe these
additional stoichiometries and configurations, the MLP has to
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be improved by including the corresponding geometries in the
training set. Indeed, recent studies have demonstrated that
proton dynamics in liquid water can be well captured if the
training set contains sufficient data points corresponding to
proton transfers.16

In practice, the currently most popular software for para-
metrizing and utilizing MLPs in electrocatalysis are LASP17 and
DeepMD.18,19 The power of the former is the availability of a
large set of predefined MLPs, while the latter has very powerful
active-learning capabilities, enabling an efficient parametriza-
tion of system-specific MLPs. Once the MLP is trained, the
usual arsenal of atomistic simulation techniques can be
applied. Nanosecond simulations of systems with 4100 atoms
would be computationally prohibitively expensive at the DFT
level of theory, but are necessary to reach converged results due
to the slow diffusion at the solid/liquid interface.20,21 These
simulations are easily reachable with MLPs.

For example, the free energy profiles of proton transfers on
the prototypical photo-electrocatalyst anatase TiO2/water inter-
face have been studied via an MLP driven by the DPMD
package.22 Trajectories of more than 2 ns could be achieved
with the MLP, which compares to 40 ps at the DFT level of
theory (see Fig. 2). This extensive phase-space sampling was
necessary, as the half-life time of OH groups at the interface
was estimated to be 300 ps. Furthermore, relying on umbrella
sampling, the dissociation barrier of chemisorbed water mole-
cules was estimated to be 30 kJ mol�1, leading to a stabilization

of the interface of about 8 kJ mol�1. Note, that this thermo-
dynamic driving force is not very strong, which imposes not
only the use of accurate energy expressions, but also extensive
phase-space sampling. The same conclusions have also been
reached at other interfaces, e.g., ethanol adsorption on alu-
mina, relevant for biomass processing.23

In order to simulate the hydrogen evolution reaction in
acidic medium over Pt, a MLP for Pt/H2O/HCl has been devel-
oped in LASP. Then, at a given chemical composition (and thus
in absence of ‘‘potential control’’), the free energy profiles for
H2 generation have been assessed via umbrella sampling.
These simulations demonstrated the co-existence of the Vol-
mer–Tafel mechanism for high-coverage areas with the Vol-
mer–Heyrovsky mechanism occurring at low to intermediate
hydrogen coverages.24

Another application of MLPs is the identification of realistic
surface structures for catalysts that are not fully crystalline. For
instance, reduced copper oxide surfaces, which are promising
for CO2 electroreduction, expose metallic copper sites that are
not completely smooth. This has been evidenced via MLP
simulations driven by LASP of several nanoseconds that aimed
at reproducing the experimental protocol, where the system
undergoes stepwise reduction reactions.25 These defect-rich
surfaces (see Fig. 3) were shown to feature various active sites
with contrasting selectivities for CO2 electroreduction products.
They suggest that the square-step active sites are responsible
for alcohol products, while planar and convex-square active
sites are more favorable for ethylene production.

The effect of an aqueous environment (as in electrocatalysis)
compared to gas-phase reactivity has been determined for the
prototypical oxidation of CO via a combination of MLP and
umbrella sampling, accumulating around 2 ns molecular
dynamics.26 These explicit solvent simulations show that water
stabilizes one of the reactants (OH*) and thus increases the
barrier. Furthermore, the activation entropy was found to
change sign between the gas phase and the solution phase,
as the solvent forms stronger H-bonds with the initial state (CO,

Fig. 2 Example of interfacial structure and the effect of long sampling
times at the MLP level compared to short sampling at the DFT level. Top:
The density profile of water confined between two TiO2 surfaces and the
oxygen radial distribution functions as obtained from DFT and from an MLP
are compared. Statistics were accumulated over 40 ps. Bottom: Equivalent
density profile, but this time obtained from an equilibrated 2.5 ns mole-
cular dynamics run. Note the differences for the ‘‘second’’ layer, which
depends strongly on the phase-space sampling and only minimally on the
chosen unit-cell size. Reproduced from ref. 22.

Fig. 3 Example of construction of disordered surfaces (here oxide
derived Cu) and the statistics of the obtained local active sites. Color
code: brown: Cu, blue: surface O, red: subsurface and bulk O. Reproduced
from ref. 25.
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OH*) compared to the transition state (TS), so that the ‘‘con-
figurational’’ entropy (translation and rotation) is more
restricted in the initial state than in the TS.

We conclude this part by pointing out a particular challenge
for the MLPs in the context of electrocatalysis: In principle, one
would wish to simulate the electrochemical potential, as is
done in grand-canonical DFT.27 Indeed, the electrochemical
potential has a direct impact on the activation energies of the
electrocatalytic reactions and is, therefore, necessary to gain the
most detailed atomistic insight.28 However, all popular MLPs
are agnostic to the electronic structure, thus the electrochemi-
cal potential is simply not defined. Hence, further develop-
ments are required, e.g., to combine MLPs with simplified
physical models that mimic the behavior of electrified inter-
faces but are, currently, ‘‘non-reactive’’, i.e., an electron transfer
to-/from the electrode to reactants cannot be described.29

Surrogate models for catalytic activity:
from microkinetics to proxies

Atomic scale computations give relatively easy access to ther-
modynamic quantities, but obtaining kinetic information is
generally more involved: transition states need to be identified
and competing reaction pathways assessed and compared via
micro-kinetic simulations, i.e., solving differential equations to
obtain the various reaction rates as a function of time. Hence,
thermodynamic quantities are rarely enough to fully under-
stand electrocatalysts and even less to discover new ones. The
most famous thermodynamic proxy for an electrocatalytic
reaction is the hydrogen adsorption energy to construct a so-
called volcano plot for the hydrogen evolution reaction.30,31

These thermodynamic proxies can be rationalized by so-called
scaling-relations, which establish a close link between the
reaction rates as obtained from micro-kinetic simulations and
the thermodynamics of key intermediates,32 which usually also
holds in electrocatalysis.33 Indeed, scaling relations and the related
volcano plots have been very popular about ten years ago34–37 and
are still in use due to their favorable complexity–accuracy tradeoff
and the thus comparably limited number of datapoints necessary
to reliably train them.38,39 However, scaling relations do not
provide an actual understanding of the working principles and
reaction mechanisms of electrocatalysts.

In this context, ML can be exploited for various tasks: first, it
can be used to directly learn microkinetics, i.e., identify the
most relevant reaction pathways40 and surface states.41 This
still requires many expensive DFT computations, but leads to
the highest confidence in the obtained results. However, this
application of ML is still very much in development and is, so
far, not applied to electrocatalysis. This absence of purely
theoretical ML-enhanced microkinetic algorithms is probably
best explained by the difficulty to identify transition states in
electrocatalysis in general.28 Hence, performing these compu-
tations in a semi-automatic and semi-systematic manner seems
currently too challenging and the community prefers to make
more drastic approximations. Nevertheless, the knowledge of

the surface reconstruction and dynamics of ternary alloys in the
absence of the electrochemical environment can be accelerated
via ML41 and is already very valuable for detailed atomistic
studies of electrocatalysis. The use of ML to interpret experi-
mental kinetic data will be discussed in the next section.

Second, ML can be used to rationalize thermodynamic
proxies, i.e., adsorption energies of H*, OH*, CO*, etc., as a
function of material properties. These ‘‘surrogate models’’,
which link atomic or elemental properties (size, number of
d-electrons, electronegativity and d-band energies are most
popular) to catalytic activity, most often generate insight into
the key factors for discriminating activities across materials but
are not directly exploitable for catalyst optimization. Still, given
the abundance of studies along these lines in the literature, we
discuss typical examples. Note that, as reviewed recently,42,43

the rationalization of trends in adsorption energies critically
relies on the use of physically relevant descriptors and inter-
pretable ML frameworks.

To start, Liu et al. have reported DFT results of 16 in silico
designed transition metal single-atom catalysts stabilized on
doped and defective AlP monolayers for oxygen evolution and
reduction reaction (OER/ORR). These results have then been
rationalized by gradient-boosted regression.44 This study is very
typical for the application of ML that rationalizes the DFT data
(see ref. 45 for the analogous study of single-atom catalysts
stabilized on C2N, which identifies the corresponding transi-
tion metal oxide formation energy as an easy descriptor for the
27 tested catalysts). However, this study does not, by construc-
tion, lead to the identification of more promising catalysts, as
all the possibilities have already been explored via DFT. Simi-
larly, analyzing the DFT data for more than 400 transition metal
atoms adsorbed on (reduced) metal oxide, the coordination
number of adsorbed species attached to the single-atom cata-
lysts has been identified as a key descriptor for their stability. In
this series, oxygen-vacancy stabilized Os on zirconia was found
to be most promising for CO2 to CO electroreduction, including
in the presence of reaction intermediates.46 However, other
physical parameters of the catalysts, such as the electrical
conductivity of these oxide supports, have been completely
neglected. When investigating and rationalizing the nitrogen-
reduction reaction activity of single-atom-alloys, the authors
critically assessed the feasibility and the dissolution potentials
of the investigated catalysts. This has allowed them to narrow
down the number of promising catalysts to only Mo, W, Ru, and
Ta/Au (111).47 This study illustrates that stability arguments are
very important and at least partially amenable for atomistic
simulations.

Going one step further towards catalyst discovery, surrogate
models can also be used for in silico screening as exemplified by
dual-metal phthalocyanine catalysts for CO2 reduction, see
Fig. 4. In this study, a machine-learning model based on 40
systems studied by DFT was used to screen the remaining 250
systems considered.48 Then, the formation energy was com-
puted only for the most relevant ones and their dynamical
stability was assessed via short molecular dynamics simula-
tions (5 ps). Finally, Ag-MoPc was suggested to be the most
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promising CO2 reduction catalyst, which should produce CO at
only �0.3 V vs. RHE. However, in contrast to the previous study,
the stability of this catalyst under realistic conditions (electro-
chemical potential, solvent, etc.) has not been considered, i.e.,
the propensity to react with water or to form hydrides has not
been assessed.

In the case of the identification of possible HER catalysts in
the MA2Z4 family (where M is a transition metal, A is C, Si, Ge or
Sn and Z is N, P or As), DFT computations have been performed
on prototype surfaces, i.e., the arrangement was kept fixed
across the series to reduce the workload.49 DFT computations
of 150 out of 276 considered structures were performed to train
an ML-model. Combinations that lead to strong deformations
were treated as outliers and removed. The resulting surrogate
model estimating the hydrogen adsorption energy was used to
predict the HER activity of the remaining 126 catalysts. Subse-
quently, DFT computations have been performed for the twenty
most promising candidates, followed by estimates of their
stability. This typical workflow (see ref. 50 for a similar study
in the MXene material family for HER catalysts) leads to
moderate savings in terms of computational power (only about
30% of the systems have not been computed via DFT). This
illustrates a general observation: on the one hand, the larger
the combinatorial space, the larger the training set needs to be.

On the other hand, in absolute terms, the computational
savings do, of course, also increase with increasing
search space.

Instead of such ‘‘global’’ ML models, which learn based on
‘‘system-wide’’ descriptors (such as stoichiometry), ML models
that only rely on the local description are more powerful for
catalysts with a diversity of active sites, such as high-entropy
alloys, ensembles of nanoparticles or irregular objects such as
dealloyed nanostructures, oxide-derived metal surfaces, etc.
Intriguingly, advanced local active-site models do not even rely
on geometry optimizations, taking the relaxation energy impli-
citly into account via graph-convolutional neural networks.51

A prototyping approach, i.e., assuming the same atomic
arrangements across the entire family, has been applied to
screen 870 M3M0 binary alloys as potential nitrogen reduction
catalysts.52 This study was driven by crystal (for assessing the
formation energy) and surface (for adsorption energies) graph
convolutional neural networks, which were trained on 3040
DFT computations. Screening the 870 potential catalysts with
this surrogate model and discarding alloys with positive for-
mation energies, only 10 catalysts have been identified to be
sufficiently promising to warrant further DFT computations.
Finally, the most promising materials were V3Ir, Tc3Hf, V3Ni
and Tc3Ta. Given that the synthetic and radioactive element Tc

Fig. 4 (a) Schematic procedure of the machine-learning-accelerated prediction of catalytic activity of dual metal phthalocyanines, whose structure is
illustrated in (b). (c) Presents the parity plot and linear regression between the DFT reference data and the best performing gradient boosting regression
(GBR) model for the limiting potential UL for CO2 electroreduction. Reprinted (adapted) with permission from ref. 48. Copyright 2021 American Chemical
Society.

Review Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
T

ha
ng

 M
i H

ai
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

3/
07

/2
02

4 
12

:5
5:

39
 C

H
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2mh01279k


This journal is © The Royal Society of Chemistry 2023 Mater. Horiz., 2023, 10, 393–406 |  399

is not a credible ingredient for practical electrocatalysts, this
study also highlights that significant reductions in computa-
tional efforts can be achieved by applying reasonable chemical
boundaries beforehand.

High-entropy alloys (HEA) are typical examples of a large
composition space combined with a very large number of local
adsorption sites of different chemical compositions. In order to
predict the most promising HEA for CO2 electroreduction,
Rossmeisl and co-workers have developed a local description
of the active sites via a Gaussian process regression. This model
has been exploited to determine the adsorption energy of H and
CO and, thus to predict the most promising compositions in
terms of selectivity and activity compared to Cu.53 One of the
most promising HEA (AuAgPtPdCu) has independently, but
concurrently, been tested experimentally and found to be,
indeed, highly active.54

As an example of irregular objects, we highlight the study of
highly disordered dealloyed Au electrocatalysts for CO2

reduction. Based on a systematic approach, an ML model was
built for the properties of active sites. The ML model was
trained on about 1000 active sites computed at the DFT level
and then applied to the total of more than 11 000 active sites.55

Later, this approach has been extended to include more realis-
tic activities based on advanced solvation treatments of about
1000 active site motives.56 While the solvation contribution is
not negligible, the overall conclusion, i.e., that the rough
surfaces are much more active than flat surfaces, remains
unchanged, which is reassuring given that it is in agreement

with experiment. What this study demonstrates, however, is
that even sophisticated solvation energies can be conveniently
incorporated in the activity of local active site models.

If enough computational power is available and combined
with well-crafted workflows and powerful surrogate models,
one can perform a catalyst screening in a very diverse composi-
tional space. For instance, Ulissi and co-workers have started
with all bulk materials available in the Materials Project,
filtering the resulting chemical space according to well defined
criteria, with the aim to find a selective partial oxygen reduction
catalyst, which would produce H2O2 and not H2O.57 The main
results are summarized in Fig. 5. The successive filtering of
materials started with bulk materials containing the 48 selected
elements available in the Materials Project database (more than
ten thousand). From this database, only combinations of one
oxophilic metal (e.g., Pd or Al) with an ‘‘inactive’’ element (e.g.,
Au, S) were kept, leading to more than 900 entries. The next
level was removing materials which were estimated to be
unstable under reaction conditions relevant for the oxygen
reduction reaction according to the corresponding Pourbaix
diagrams. This left only about 70 materials to be investigated in
more detail. Generating low Miller-index surfaces would give
rise to about 70 000 active sites for oxygen adsorption. In order
to significantly reduce the number of required DFT computa-
tions, these active sites have been further categorized according
to their likelihood to interact with oxygen. In the end, only
about one thousand DFT computations have been performed to
identify the most promising candidates that might reduce O2

Fig. 5 (A) Two-dimensional latent space of surfaces with competitive thermodynamic overpotentials for the production of H2O2, ZH2O2
. Examples of

catalytically (B) active and (C) inactive surfaces. (D) Box plot of ZH2O2
distribution in each cluster and occurrence heatmaps of (E) inactive and (F) active

elements in each cluster. Reprinted (adapted) with permission from ref. 57. Copyright 2021 American Chemical Society.
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selectively to H2O2 (see Fig. 5). Note, however, that no oxides
have been considered, a family that is likely to be very
promising.

A second example along the same lines that we would like to
highlight is the screening of CO2 electrocatalysts aiming at
higher efficiencies for C2 products.58 The computational
screening started with the observation that copper seems an
essential building block. Therefore, only copper containing
intermetallic compounds have been investigated, which still
amounts to more than 200 candidates of the Materials Project
database. Generating likely surfaces and enumerating the
potential active sites for CO adsorption as a proxy led to more
than 200 000 active site motives. To explore this huge space, an
active-learning algorithm has been applied to limit the DFT
computation only to the most important region. Still, some
4000 DFT computations have been performed. From the ana-
lysis of the most promising active sites, it became clear that
Al–Cu intermetallics seemed very promising. Therefore, corres-
ponding experiments have been performed, demonstrating a
significant increase (from 35% to 60%) in ethylene faradaic
efficiency compared to bare copper, validating the screening
strategy.

A fascinating idea to reduce the size of the training sets
while spanning the whole periodic table is the use of interpola-
tions across the periodic table.59 In this case, instead of
element-specific parameters, period and column-related
descriptors are exploited to describe the properties of the
various atoms. This is especially valuable for screening bi-
and multi-metallic alloys, which are typical electrocatalysts.60

Finally, if sufficient data is available, special ML techniques
might be able to perform the so-called inverse design: Instead
of ‘‘blindly’’ screening materials to identify the most promising
ones, the ML model can predict a material that would corre-
spond most closely to the desired target via generative models.
This has recently been exemplified for photoanode properties of
Mg–Mn–O ternary materials. The generative model has pre-
dicted 23 previously unknown crystal structures with reasonable
calculated stability and band gaps.61 If in silico screening could
be properly combined with stability and synthesizability
models, the road for a fully in silico design of electrocatalysts
would be open. For now, the reliable prediction of material
stability is restricted to a given class (e.g., perovskites),62 and the
best synthesizability models rely on the natural language pro-
cessed literature,63 which means that they are mostly applicable
to well-studied systems.

Despite some successes, inverse design is still in its infancy
in heterogeneous (electro-)catalysis and it remains doubtful
that the complexity of general inorganic materials (including
polymorphism and phase-separation) is amenable to this type
of ML. This contrasts with the chemical64 and conformational
complexity65 of organic molecules and their adsorption modes
on (electro-)catalysts,66 which is at least partially amenable to
ML-augmented workflows and generative models.7 Indeed, the
reactivity of flexible, polyfunctional molecules such as polyols
has been a long-standing issue, addressed via scaling-
relations36 and group-additivity,67 before the advent of the

more advanced ML-based exploration algorithms.66,68 As an
alternative to generative models, materials with potentially
suitable properties can be directly retrieved from the literature
via natural language processing as exemplified for electron-
conducting polymers.69 In general, a word of caution is in
place: ML models can be made excellent for interpolations,
but tend to fail for extrapolations. This somewhat disappoint-
ing feature of ML is intimately linked to its strength: the
flexibility of ML models allows them to fit arbitrary functions.
However, this comes at the cost of the loss of physical bounds.
From this point of view, only introducing physically motivated
mathematical descriptions of the problem is likely to lead to
better extrapolation capabilities. Therefore, it is likely that
(near) optimal materials are already identified during the
construction of the training set for the ML model, questioning
the added value of the resulting ML model itself.

Assisting experiments: enhanced
characterization and synthesis or
operation condition optimization

Since ML is closely related to data analysis, it can help in
interpreting experimental data, typically obtained during
catalyst characterizations, and even much older deconvolution
techniques as applied to mass-spectrometry70 or NMR spectra71

of complex mixtures are part of ML. Modern data analysis
methods have already been applied to decompose Raman
spectra of mixtures,72 e.g., of carbon nanotubes, a typical
support in electrocatalysis. A recent development that we would
like to highlight is the ML-enhanced extended X-Ray absorption
fine structure (EXAFS) analysis. For example, an artificial
intelligence augmented tool, relying on a genetic algorithm,
has been shown to be very powerful across domains, from
molecular complexes, to metallic copper and operando studies
of the role and location of Sn in Li-ion batteries.73 A competitor
of this tool has been developed based on neural networks.74

This NN-EXAFS method specifically targets the elucidation of
the structure of mono- and bi-metallic nanoparticles (NPs) and
in particular allows to gain insights into thermal disorder
effects. Additionally, if the size of the NPs is well defined, this
method allows one to reconstruct likely morphologies, which is
very valuable for structure–property relationships, including in
electrocatalysis. With applications in molten salts,75 the trans-
ferability of the NN-EXAFS approach to very challenging media,
has already been demonstrated.

Analogously, combining an atomistic DFT-based reference
library with machine-learning for assignments of the experi-
mental spectra, X-ray absorption near edge structure (XANES)
spectra of mixtures can now be easily and consistently ana-
lyzed, as demonstrated for iron adsorbed in silica.76 Similarly,
the acceleration of the analysis of small-angle X-ray scattering
(SAXS) experiments by machine-learning has been proposed.77

This hybrid genetic-algorithm, neural-network approach allows
obtaining insights into mixtures of NPs more easily. Likewise,
image-processing ML-techniques have been found to be highly
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beneficial for the high-throughput analysis of transmission
electron microscopy (TEM) images.78 Complementarily, a more
atomistic approach based on Bayesian deep learning has been
developed to reconstruct an atomistic view of (noisy) TEM
images.79 This approach, called ARISE, allows the identification
of known polymorphs in complex mixtures and has been
successfully applied to atomic electron tomography data of
metallic FePt nanoparticles, highlighting its relevance for elec-
trocatalytic operando studies. In summary, in these cases ML
serves either of two purposes: reducing human-time consum-
ing data analysis (image analysis) and extracting a maximum
amount of data based on the recorded spectra via a comparison
with a library of (hypothetical and/or previously recorded)
materials of the same family. Clearly, these tools will also be
very valuable for applications in electrocatalysis.

While the characterization of catalysts is very important for
establishing structure–property relationships and understand-
ing trends, it is not directly connected with the catalytic activity
itself. For further integration between machine-learning and
experiments, we highlight the use of ML to interpret kinetic
data. For example, ML was exploited to identify ‘‘optimally
complex’’ reaction mechanisms for the hydrogen peroxide
reduction and oxidation reaction over carbon nanotubes. Here,
ML identified which mechanistic details can, and which can-
not, be supported by the available experimental data. Indeed,
the data analysis and uncertainty estimations demonstrated
that even the simplest ‘‘common’’ three-step model cannot be
parametrized satisfactorily, i.e., with enough independent
parameters.80 A similar approach, where the experimental
kinetic data for proton reduction in acidic medium over
platinum was reproduced by a ML-fitted microkinetic model,
has been used to determine the adsorption energy of hydrogen
on Pt, which was found to be slightly positive.81 This finding
suggests that optimal HER activity is related to optimal H
adsorption near the relevant (hence slightly larger than the
equilibrium) overpotential, in agreement with suggestions
from Exner’s purely theoretical work on potential dependent
volcano curves.82 Analogous analysis of kinetic data of oxygen
reduction in acidic medium over platinum single-crystal sur-
faces demonstrated that the determination of potential-
independent kinetic parameters is a drastic approximation.83

Moreover, the obtained results challenged the common idea of
a single rate determining step. Instead, again in line with the
concept of potential-dependent volcano curves,82 the dominant
mechanism changes as a function of the potential, with inter-
mediate regimes where two competing mechanisms coexist.
These three studies clearly demonstrate that the interpretation
of kinetic data of electrocatalytic reactions can strongly benefit
from ML to maximize the compromise between gained insights
and data over-interpretation.

As mentioned at the end of the previous subsection, we have
substantial doubts that a fully in silico design of electrocatalysts
is a goal worth pursuing. However, the literature on ML-
accelerated design of experiments, i.e., the ML-driven experi-
mental exploration of a given chemical space seems very
promising. This includes catalyst synthesis and operation

condition optimizations, both of which can be quite time and
resource intensive if done in a ‘‘blind’’ manner. The overall
procedure is as follows: The factors that can be varied experi-
mentally (typically reactant concentrations, reaction time, tem-
perature, etc.) are used as input parameters for a ML model that
is trained to predict the experimentally measured catalytic
activity. The most common ML model for this is a Bayesian
Gaussian regression, which includes uncertainties and tends to
deliver smooth inter- and extrapolation results, so that new
experiments can be proposed reliably in regions where the
uncertainty is high (extrapolation), but are predicted to lead
to more active materials/conditions. Of course, this supposes
that there is a so far undetected optimum in the explored
parameter space, which is not always the case. For example, the
impact of the ratio between Fe and Ni in an oxide catalyst on
the OER activity in alkaline medium has been described via
symbolic regression. The model was well able to reproduce the
training set, but it turned out that the training set already
included the optimal ratio, as subsequently confirmed by
additional experiments in its vicinity.84

One way to exploit machine-learning for synthesis optimiza-
tion is to extract a database of literature results. Then, analyz-
ing the differences in synthesis protocols can allow the
identification of the critical parameters. This has been achieved
for the specific case of acidic ORR catalysts that are derived
from the pyrolysis of zeolite imidazole frameworks (ZIF)
impregnated with non-precious metal salts. The database ana-
lysis consisting of about 100 entries suggested that in addition
to the more obvious factors such as the nature of the transition-
metal and the pyrolysis temperature, the pyrolysis time also has
a significant influence, likely linked to the formation of pyr-
idinic N–Fe entities which has to be balanced against the
evaporation of nitrogen-containing transition metal species.
This data-derived hypothesis was then confirmed via dedicated
experiments.85

For practitioners, we would also like to highlight that
already small training sets can benefit from ML: for the
noble-metal free ZIF-derived catalysts for ORR, only 36 data-
points synthesized on a three-dimensional grid (iron precursor,
iron/zinc ratio and pyrolysis temperature) were enough to train
an ML model that could predict an improved combination.
Once synthesized, this formulation was indeed found to lead to
a higher activity compared to the training set.86

When more data are available, the loop between experiment
for training the ML model and supplementary experiments
becomes more impressive. For example, the OER activity of
18 perovskites has been evaluated in alkaline solution under
various current densities, leading to a set of 1080 data points,
where each experiment had been replicated three times to
account for reproducibility and variability of the measure-
ments. Based on this dataset, symbolic regression was able to
identify a simple linear relationship between the octahedral
and tolerance factors of the perovskites and their OER activity
(see Fig. 6). Subsequently, 3000 hypothetical structures have
been screened in silico. The synthesis of thirteen of the most
promising perovskites was attempted. Five of them have been
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successfully and purely been obtained and four found to be
more active than the previously known perovskites, without
dramatic degradation over time.87 This demonstrates both the
data intensiveness and also the practical usefulness of such
tight experiment/theory feedback-loops.

To close this section and bridge it to the next one mostly
dealing with automation, we mention a typical high-
dimensional optimization of experimental reaction conditions:
To explore the relation between photocatalytic HER activity of
an organic polymeric catalyst, the ionic strength, scavengers,
presence of organic dyes and the pH, a 10 dimensional search
space was explored using a mobile robot.88 With only 688
experiments over eight days driven by a Bayesian search algo-
rithm, the HER activity could be optimized, leading to a six-fold
increase in H2 yield compared to the baseline (catalyst plus
scavenger). This example perfectly illustrates the combination
of robotics and ML-driven design of experiment that strongly
facilitates and accelerates catalytic system-optimizations under
the constraint that the hardware needs to be available and
adapted to the specific reaction at hand.

Acceleration of synthesis,
characterization and testing via
robotics

High-throughput experiments involving electrocatalyst synth-
esis, characterization and testing are crucial to provide suffi-
cient high-quality, consistent training data for the ML
models.89 Such robotic setups can be effectively combined with
ML to create a closed-loop approach for accelerated catalyst
development.90

First, combinatorial high-throughput synthesis of electroca-
talysts can be performed using robotics, which has the ability to
automatically tune key parameters such as reaction sequence,
temperature, mixing speed, etc.91 These high-throughput tech-
niques enable rapid synthesis of a large variety of catalyst
materials with diverse constituents and phases.92 For example,
thin film sputtering and pulsed laser deposition have been
combined with robotic arms and shadow masks to synthesize a

large family of catalysts with variable compositions and
thicknesses.93 Jet dispensing was explored as a high-throughput
approach to screen and synthesize materials, while controlling
important variables such as stoichiometry, solid content and
solvent grade.94 Sol–gel synthesis of catalysts can also be per-
formed using multi-channel pipetting robots to dispense precursor
solutions into reaction vials automatically.95 Similarly, the synth-
esis conditions of a metal–organic framework (MOF) in a nine
dimensional space has been explored via a robotic platform
coupled to a microwave heating system. This has allowed generat-
ing and recording sufficient experimental data to reconstruct
‘‘chemical intuition’’, which relies not only on optimized synthesis
conditions, but also on the knowledge of failed attempts. As the
authors pointed out, the literature on failed experiments is rather
sparse, which limits the application of machine-learning to experi-
mental data.96

Second, high-throughput characterization is important to
ensure that the electrocatalyst materials have been synthesized
using the correct chemical composition, phase, structure, etc.97

For example, Raman spectroscopy can be combined with auto-
matic translation and rotation stages with a laser autofocus
technology to allow rapid characterization of catalyst composi-
tions, surface states and reaction intermediates.98–100 In addi-
tion, X-ray-based techniques such as X-ray diffraction and
absorption spectroscopy can be equipped with automatic sam-
ple changers to characterize a large number of catalysts with
minimum human intervention. A new system called RoboRiff
with a robotic sample changer and goniometer has been used
in cryogenic crystallography for beamline experiments.101 A
robotic sample changer has also been developed for high-
throughput small-angle X-ray scattering at beamlines, able to
characterize hundreds of samples per day.102

Third, high-throughput electrocatalyst testing is key in
elucidating structure–property relations.103 Microfluidic reac-
tors can be designed with miniature working, counter and
reference electrodes to test catalytic activity in a parallel
manner.104 For example, a 100-channel microreactor array is
able to measure the catalytic activity of metal alloys with a
spatial resolution of 1 mm2.105 High-throughput electrocatalyst
screening can also be done using automated scanning droplet

Fig. 6 (a) Density plot and Pareto front of the mean absolute error as a function of the complexity of 8640 mathematical formulas. (b) Onset potentials
for the OER reaction as a function of the ratio between the octahedral and tolerance factors (m/t) (black: previously known perovskites; red dots:
discovered perovskites). Reproduced from ref. 87.
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cells, which is a scanning probe electrochemistry technique
where the droplet probe acts as the electrochemical cell to
measure the properties of the sample. This has been used for
high-throughput screening of HEA for ORR, identifying the
model system Ag–Ir–Pd–Pt–Ru with maximum activity.106 In
addition, continuous flow cells with gas diffusion layers may
help to automate the quantification of products in CO2

electroreduction.58 In these flow systems, gas chromatography
and NMR spectroscopy can be used to detect gaseous and
liquid reaction products rapidly in real-time using automatic
sample handling and injection systems.107

Outlook and conclusions

Despite the progress and successes achieved in recent years for
the acceleration of discovery and optimization of electro-
catalysts via machine learning, there are still some challenges
and room for the development and improvement of ML
methods.

MLPs become advantageous when dynamic simulations of
nanoseconds for large size electrocatalytic interfaces are neces-
sary. Their training remains challenging, but has become
accessible in the last couple of years. Recent successful applica-
tions of MLPs are the identification of realistic surface struc-
tures of rough catalyst surfaces and the HER mechanism over
Pt in acidic medium. However, the construction of MLPs is time
consuming since they are system specific. Another limitation is
that MLPs cannot describe the electrochemical potential, which
is problematic for electrocatalytic reactions. It would thus be
desirable to develop MLPs that can mimic the behavior of
electrified interfaces.108

As for the discovery of catalysts using surrogate models, the
typical approach is using DFT to compute a number of data
points to train a ML model, then using the resulting surrogate
model to predict the activity of the remaining catalysts. Such an
approach can effectively reduce computational efforts. We have
also highlighted a recent successful prediction of promising
perovskite photocatalysts by performing a technique called
‘‘inverse design’’. However, this technique is not yet broadly
applicable in electrocatalysis due to the complexity of general
inorganic materials. Indeed it is challenging to create unique
and invertible ML representations for complex materials with
specific symmetries, amorphous phases, defects, etc., requiring
further research efforts in this direction.109

In terms of ML assisting experiments, two tools for ML-
enhanced EXAFS analysis have been reported to be powerful for
molecular complexes, bulk crystals and bi-metallic NPs and can
capture the thermal disorder effects of materials. In addition,
many other ML techniques, i.e., image-processing (high-
throughput TEM) and SAXS analysis were also highlighted in
this review. These techniques allow human intervention to be
significantly reduced, thus accelerating the data generation
process, which will be useful in electrocatalytic studies. These
applications of ML in experimental data analysis are also
strongly connected with ongoing research in explainable

artificial intelligence, which seeks to improve interpretability
of results and to build trust in human users.110

Finally, in the area of robotics, it is noteworthy that the majority
of high-throughput electrocatalysis experiments are still being
performed on a laboratory scale. The automated processes need
to be scaled up substantially for future commercial applications.
Moreover, many experiments are only partially automated, with
the need for handling samples manually between steps. This can
be potentially addressed by using conveyor belts to transport
samples between workstations and hence minimize human inter-
vention. It is also promising to integrate automation into a broader
range of characterization techniques, such as using reel-to-reel
tape translation systems in high-throughput TEM to enable con-
tinuous imaging of samples.111 The use of autonomous labora-
tories is a promising way to generate high-throughput
experimental data for screening within a well-defined family of
catalysts or for the optimization of catalytic systems without much
human intervention. The automation generally reduces human
errors and improves the productivity and reproducibility of experi-
ments but requires large capital investments from research facil-
ities and higher levels of maintenance compared to manually
operated machines.

The different approaches covered in this review are perfectly
complementary: MLPs target mechanistic understanding, sur-
rogate models (e.g., scaling relations) are aimed at screening,
and ML-augmented experiments are most useful for the opti-
mization of catalysts. The ultimate goal is to combine ML and
robotics into a truly automated and continuous workflow for
closed-loop discovery of materials. Such a self-driving labora-
tory can accelerate electrocatalyst development, bringing us
closer towards a sustainable energy future.112
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B. Rotenberg, S. Bonella and M. Salanne, J. Chem. Phys.,
2022, 157, 18480.

30 R. Parsons, Trans. Faraday Soc., 1958, 54, 1053–1063.
31 S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem.,

1972, 39, 163–184.
32 T. Bligaard, J. K. Norskov, S. Dahl, J. Matthiesen,

C. H. Christensen and J. Sehested, J. Catal., 2004, 224, 206–217.
33 J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist,

J. R. Kitchin, T. Bligaard and H. Jonsson, J. Phys. Chem. B,
2004, 108, 17886–17892.

34 P. Ferrin, A. U. Nilekar, J. Greeley, M. Mavrikakis and
J. Rossmeisl, Surf. Sci., 2008, 602, 3424–3431.

35 I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martinez,
N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Norskov and
J. Rossmeisl, ChemCatChem, 2011, 3, 1159–1165.

36 J. Zaffran, C. Michel, F. Auneau, F. Delbecq and P. Sautet,
ACS Catal., 2014, 4, 464–468.

37 F. Calle-Vallejo, D. Loffreda, M. T. M. Koper and P. Sautet,
Nat. Chem., 2015, 7, 403–410.

38 E. A. Monyoncho, S. N. Steinmann, P. Sautet, E. A. Baranova
and C. Michel, Electrochim. Acta, 2018, 274, 274–278.

39 K. Yang, J. Zaffran and B. Yang, Phys. Chem. Chem. Phys.,
2020, 22, 890–895.

40 T. Lan and Q. An, J. Am. Chem. Soc., 2021, 143, 16804–16812.
41 J. Yoon, Z. Cao, R. K. Raju, Y. Wang, R. Burnley,

A. J. Gellman, A. B. Farimani and Z. W. Ulissi, Mach. Learn.
Sci. Technol., 2021, 2, 045018.

42 M. Andersen and K. Reuter, Acc. Chem. Res., 2021, 54, 2741–2749.
43 B. Wang and F. Zhang, Angew. Chem., Int. Ed., 2022,

61, e202111026.
44 X. Liu, Y. Zhang, W. Wang, Y. Chen, W. Xiao, T. Liu,

Z. Zhong, Z. Luo, Z. Ding and Z. Zhang, ACS Appl. Mater.
Interfaces, 2022, 14, 1249–1259.

45 Y. Ying, K. Fan, X. Luo, J. Qiao and H. Huang, J. Mater.
Chem. A, 2021, 9, 16860–16867.

46 R. Qi, B. Zhu, Z. Han and Y. Gao, ACS Catal., 2022, 12,
8269–8278.

47 G. Zheng, Y. Li, X. Qian, G. Yao, Z. Tian, X. Zhang and
L. Chen, ACS Appl. Mater. Interfaces, 2021, 13, 16336–16344.

48 X. Wan, Z. Zhang, H. Niu, Y. Yin, C. Kuai, J. Wang, C. Shao
and Y. Guo, J. Phys. Chem. Lett., 2021, 12, 6111–6118.

49 J. Zheng, X. Sun, J. Hu, S. Wang, Z. Yao, S. Deng, X. Pan,
Z. Pan and J. Wang, ACS Appl. Mater. Interfaces, 2021, 13,
50878–50891.

50 X. Wang, C. Wang, S. Ci, Y. Ma, T. Liu, L. Gao, P. Qian, C. Ji
and Y. Su, J. Mater. Chem. A, 2020, 8, 23488–23497.

51 G. H. Gu, J. Noh, S. Kim, S. Back, Z. Ulissi and Y. Jung,
J. Phys. Chem. Lett., 2020, 11, 3185–3191.

52 M. Kim, B. C. Yeo, Y. Park, H. M. Lee, S. S. Han and D. Kim,
Chem. Mater., 2020, 32, 709–720.

53 J. K. Pedersen, T. A. A. Batchelor, A. Bagger and J. Rossmeisl,
ACS Catal., 2020, 10, 2169–2176.

Review Materials Horizons

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
T

ha
ng

 M
i H

ai
 2

02
2.

 D
ow

nl
oa

de
d 

on
 1

3/
07

/2
02

4 
12

:5
5:

39
 C

H
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://swisscatplus.ch
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2mh01279k


This journal is © The Royal Society of Chemistry 2023 Mater. Horiz., 2023, 10, 393–406 |  405

54 S. Nellaiappan, N. K. Katiyar, R. Kumar, A. Parui, K. D. Malviya,
K. G. Pradeep, A. K. Singh, S. Sharma, C. S. Tiwary and
K. Biswas, ACS Catal., 2020, 10, 3658–3663.

55 Y. Chen, Y. Huang, T. Cheng and W. A. Goddard, J. Am.
Chem. Soc., 2019, 141, 11651–11657.

56 S. Naserifar, Y. Chen, S. Kwon, H. Xiao and W. A. Goddard,
Matter, 2021, 4, 195–216.

57 S. Back, J. Na and Z. W. Ulissi, ACS Catal., 2021, 11,
2483–2491.

58 M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C.-T. Dinh,
P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun,
O. Voznyy, C.-S. Tan, M. Askerka, F. Che, M. Liu,
A. Seifitokaldani, Y. Pang, S.-C. Lo, A. Ip, Z. Ulissi and
E. H. Sargent, Nature, 2020, 581, 178–183.

59 M. J. Willatt, F. Musil and M. Ceriotti, Phys. Chem. Chem.
Phys., 2018, 20, 29661–29668.

60 X. Li, R. Chiong and A. J. Page, J. Phys. Chem. Lett., 2021,
12, 5156–5162.

61 S. Kim, J. Noh, G. H. Gu, A. Aspuru-Guzik and Y. Jung, ACS
Cent. Sci., 2020, 6, 1412–1420.

62 G. H. Gu, J. Jang, J. Noh, A. Walsh and Y. Jung, npj Comput.
Mater., 2022, 8, 1–8.

63 H. Huo, Z. Rong, O. Kononova, W. Sun, T. Botari, T. He,
V. Tshitoyan and G. Ceder, npj Comput. Mater., 2019, 5, 1–7.
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and X. Chen, J. Chem. Theory Comput., 2022, 18, 4574–4585.

66 G. H. Gu, M. Lee, Y. Jung and D. G. Vlachos, Nat. Commun.,
2022, 13, 2087.

67 G. H. Gu, B. Schweitzer, C. Michel, S. N. Steinmann,
P. Sautet and D. G. Vlachos, J. Phys. Chem. C, 2017, 121,
21510–21519.

68 J. Järvi, B. Alldritt, O. Krejčı́, M. Todorović, P. Liljeroth and
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