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Development of a nano-QSAR model for
predicting the toxicity of nano-metal oxide
mixtures to Aliivibrio fischeri†

Minju Na,ac Sang Hwan Nam, b Kyonghwan Moonc and Jongwoon Kim *a

Metal oxide nanoparticles (MONPs) have various applications, including cosmetics, detergents, and

antibacterial agents, owing to their unique physicochemical properties. MONPs are often mixed and used

in products and exist together through various exposure routes in the environment. Toxicity can occur

between chemicals at no observed effect concentrations (NOECs) by the cocktail effect (e.g., addition,

synergism, potentiation), but a definitive toxic assessment for the nanoparticles is still lacking. There have

been several studies on nano quantitative structure–activity relationships (nano-QSAR), but the calculations

of the descriptors (<1000 atoms) for the engineered size of the nanoparticles (NPs) based on density

functional theory (DFT) are unclear. In this study, we conducted both mixture toxicity assays and molecular

dynamics (MD)-based molecular descriptor calculations to develop a nano-mixture QSAR model. A toxicity

assay was performed for a mixture of SiO2, TiO2, and ZnO NPs of various sizes (8–140 nm), targeting a

marine bioluminescent bacterium called Aliivibrio fischeri, a decomposer in aquatic ecosystems. Theoretical

molecular descriptors were calculated based on molecular dynamics (MDs) to reflect the characteristics of

NPs of different sizes. Two different types of descriptors (total descriptors and the calculated descriptors)

were used to develop the models. In this study, four machine-learning algorithms (random forest (RF),

support vector machine (SVM), Bayesian regularized neural network (BRNN), and multilinear regression

(MLR)) were applied to develop a nano-mixture QSAR model. The proposed model based on MD shows

potential for use in the selection of a safer MONPs combination design.

1. Introduction

Nanoparticles (NPs) have unique physical and chemical
properties, including small and quantum size effects.1,2

Owing to their unique properties, NPs have a wide range of

applications in electronics, consumer products (e.g., paints
and fabrics), personal care products (e.g., sunblock), and
biomedicine. Although various nanomaterials are typically
used, metal oxide nanoparticles (MONPs) constitute
approximately 80% of the market volume (Abercade Research
Company, 2009). As they are released into the external
environment after use, MONPs encounter various chemicals,
and even at environmentally safe concentrations,
combinations of MONPs can be toxic to aquatic organisms.
Upon release, MONPs can interact with the environment,
leading to a toxic mixture that is exposed to the organisms
and causes mixture toxicity.3 When chemicals interact,
synergistic or antagonistic effects are considered. A
synergistic effect occurs when the mixture toxicity is greater
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Environmental significance

Metal oxide nanoparticles (MONPs) widely used in different industrial applications are frequently mixed in products, and encounter each other through
various environmental exposure routes. The mixture toxicity of MONPs presenting at no observed effect concentrations can be caused by the cocktail effect.
As one of the first studies on developing a nano-mixture quantitative structure–activity relationship model for Aliivibrio fischeri using molecular dynamics-
based descriptors for MONP mixtures (SiO2, TiO2, and ZnO groups) in a wide range of sizes (8–140 nm), this study also provides experimental data for the
first time on the mixture toxicity of the MONPs to A. fischeri. A random forest based nano-QSAR model was successfully developed to predict the EC10 and
EC50 of nano-MONP without the dose–response curves of the components.
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than the sum of the toxicity of individual components,
whereas the antagonistic effect has the opposite result.4–6

However, effective experimental studies may be unfeasible
because a series of concentrations of all components of
various combinations of nano-mixtures must be established
to test the toxic effects of the different mixtures. Additionally,
the complete experimental characterization of toxicity for all
varying preparations is laborious, but predictions of the
relationship between the structure of NPs and their biological
activity are in high demand. The quantitative structure–
activity relationship (QSAR) approach is one of the most
time-efficient computational methods, a molecular modeling
approach that evaluates the relationship between structure
and activity using machine-learning methods and
mathematical statistics. The properties of various NPs have
been modeled and predicted over the last decade using QSAR
approaches.4

The term “nano-QSAR” refers specifically to the search for
quantitative links between NP features and target activity.
Structural features are typically represented by various
numeric parameters (also known as “descriptors”).7,8 Tomasz
Puzyn et al. (2011)9 developed models describing the
cytotoxicity of 16 metal oxide NPs to Escherichia coli.
Quantum chemical calculations were performed using the
PM6 semi-empirical method. Cytotoxicity predictions based
on the same dataset of 17 metal oxide NPs were further
investigated.10 Density functional theory (DFT)-based
descriptors (hardness, softness, energy gap, and
electrophilicity index) indicated a high correlation between
the experimental and predicted values. Current nano-QSAR
models concerning the toxicity of nano-mixtures are mostly
focused on predicting the cytotoxicity of TiO2-based nano-
mixtures on Chinese hamster ovary cell lines4,7,8 and human
kidney two cell lines.11 Mikolajczyk et al. (2018)8 developed a
cytotoxicity prediction model for 34 TiO2 samples modified
with different types and amounts of noble metals (mixtures
of Ag, Au, and Pt), and quantum-mechanical (QM) descriptor
calculations were performed at the DFT level with metal
clusters (5 × 5 × 5 Å). Several nano-QSAR models, based on
metallic and metal oxide nanoparticles, have been developed
for predicting cytotoxicity.4,7,8,11–13 Furthermore, Trinh et al.
(2022)14 developed QSAR models to predict the mixture
toxicity of TiO2-based nano-mixtures to Daphnia magna, and
the descriptors were calculated using the semi-empirical
parametric method seven (PM7) based on the TiO2 anatase
nanocluster (0.75 × 0.75 × 1.35 nm3). Although the
descriptors mentioned above are widely used in nano-QSAR
studies, there is a limitation regarding their applicable size.
DFTs generally offer higher material fidelity, but it is limited
to small systems, which are usually less than 1000 atoms.
Therefore, it is necessary to develop QSAR models using a
different descriptor-calculation approach. The force field
(also called an interatomic potential)-based method is the
only remaining possible option, and large-scale atomic/
molecular massively parallel simulator (LAMMPS)15 software
(a flexible simulation tool for particle-based materials

modeling at the atomic, meso, and continuum scales) was
chosen for calculating descriptors in this study. Molecular
dynamics (MD) is an essential modeling technique, where
Newton's second law of motion for the atoms/molecules in a
system is applied to obtain their physical properties, and
describes the thermodynamic behaviors of the system.

In an aquatic environment, several mixtures are present,
including various sizes of MONPs. Therefore, models that
can accommodate size-dependent MONP mixtures are
necessary for the risk assessment of nano-mixtures. Since the
cytotoxicity of TiO2-based nano-mixtures4,7,8,11 and toxicity of
D. magna14 could be predicted using the structures of the
mixtures, we hypothesized that the mixture toxicity of MONPs
to A. fischeri might also be related to the structures of the
mixtures. This marine bacterium has widely been used as a
test organism to investigate the toxicity of pollutants,
including heavy metals16 and nZnO.17,18 Since bacteria act as
decomposers in an ecosystem, the effect of MONPs on
bacteria can disrupt the entire ecosystem.

In this study, we aimed to minimize the experimental cost
of the environmental risk assessment of nano-mixtures and
also overcome the size limitations. We developed nano-
mixture QSAR models using MD descriptors to predict the
toxicity of MONPs to A. fischeri. The nano-mixture QSAR
models were developed using mixture descriptors, which
were calculated by combining the molecular descriptors of
the components of the mixtures in a component-based
approach. The QSAR models developed in this study can be
used in web-based applications (https://mjna-nano.
shinyapps.io/monps) to assess the aquatic toxicity of the
MONP mixtures, where users can input individual MONP
information (i.e., type, size, and mole fraction) and predict
the concentration of the mixture toxicity value (EC50 and
EC10).

This study presents two novel aspects: 1) single and
mixture toxicity assessment for A. fischeri and toxicity data
production. 2) Nano-mixture QSAR model development based
on MD descriptors to characterize the MONPs properties of
various sizes and reflect the exact engineered size. Four
machine learning algorithms (random forest [RF], support
vector machine [SVM], multiple linear regression [MLR], and
Bayesian-regularized neural network [BRNN]) were applied to
develop nano-mixture QSAR models based on the calculated
descriptors using the MD tool, including properties of the
various sizes of MONPs.

2. Methods
2.1 Target MONPs

A total of 12 targets in four different types of MONPs of
various sizes (8–140 nm) were purchased in nano powder
form from US Research Nanomaterials (Houston, TX, USA).
We attempted to expand the applicability domain of MONPs
of various size ranges. Accordingly, a range of commercially
available MONP sizes were investigated. Of these, SiO2, TiO2,
and ZnO were selected as the target materials in this study.
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Additionally, these fall in the top five in terms of general
usage. Further details on the target MONPs are presented in
Table 1.

2.2 Characterization of MONPs

Different MONP suspensions were prepared in a 2% NaCl
solution, and the solutions were subjected to 30 min
sonication with an ultrasonic probe (15 °C, 60 W) to decrease
the agglomeration. To determine the surface charge and the
actual size of the MONPs in suspension, it was necessary to
measure the zeta potential and hydrodynamic size. Both
single and mixed samples of MONPs were characterized by
measuring the hydrodynamic size (Z-average) and zeta
potential using a Zeta Nano-ZS with a 532 nm laser (Malvern
Instruments, UK). The surface charge of the MONPs was
characterized via their zeta potential. The measurement
sample was a 2% NaCl solution (salinity of seawater) for
marine bacteria, and the particle size and surface charge
were measured. All measurements were conducted in
triplicate at 25 °C, and the average values were established.

2.3 Toxicity test

The toxicity of MONPs was experimentally determined using
the bioluminescent bacterium, A. fischeri. The sample
effective concentration (EC) was determined using the
International Organization of Standardization (ISO) 21338,19

which stipulates the kinetic inhibitory effects of the
sediment, other solids, and color samples on the light
emission of A. fischeri. Our target samples, MONPs, have low
solubility in water. Suspensions of the three different MONPs
prepared with the 2% NaCl solution were serially diluted at a
1 : 1 (100 μL) ratio in a white 96-well plate. A. fischeri
bioluminescence was recorded using a CentroXS LB 960
high-sensitivity microplate luminometer (Berthold
Technologies, France). Triplicates were considered for each
concentration and control, and the exposure time of the
tested MONPs to A. fischeri was set at 30 min. For quality
assurance of the bacteria, 100 ppm zinc sulfate solution
(Sigma-Aldrich) was measured for each case.

2.4 Mixture toxicity test

Mixture toxicity was tested for all the binary mixtures
prepared from the 12 target MONPs. The binary mixtures
were prepared, including two equitoxic mixtures at a 50%
effective concentration for each MONP as a high effective
concentration ratio mixture (EC50 ratio mixture) and at 10%
effective concentration ratio mixture (EC10 ratio mixture) as a
low effective concentration ratio mixture. Additionally, a
combination of EC50 and EC10 ratio mixtures was used to
establish a medium effective concentration. Binary mixture
toxicity tests were conducted using the same method as for
the analysis of individual toxicity tests. A total of 93 binary
mixtures were tested in equitoxic doses at high and low
effective concentrations (e.g., EC50 and EC10, respectively).
However, the total doses of the mixtures systematically
differed. Further details on the mixture design are presented
in Table S3.†

2.5 Statistical analysis of the mixture toxicity

Sigmoidal regression equation parameters were estimated
using Sigma Plot® (Ver. 14.0, Systat Software, Chicago, IL,
USA). A best-fit approach was used to select the model with
the smallest sum of absolute residuals and the highest
coefficient of determination (R2) among the different
sigmoidal functions. Using three-parameter sigmoidal
equations, the best-fit models were finally determined and
applied to describe the experimental data of the single and
mixture MONPs tested in this study. The ECx (e.g., EC10 and
EC50) values of the test chemicals were derived from the
regression models. One of the widely used classical models for
mixture toxicity prediction is the concentration addition (CA)
model. CA is expressed mathematically as shown in eqn (1):

ECxmix

Xn
i¼1

pi
ECxi

 !− 1
(1)

where ECxmix is the predicted total concentration of the
mixture, which provokes the x% effect, and ECxi and pi are the

Table 1 Target metal oxide nanoparticles (MONPs)

No. Particlea Engineered nanoparticles (NPs) diameter [nm] Molecular weight [g mol−1] Purity [%]

1 SiO2 8 60.08 99.0
2 SiO2 (porous) 15–20 60.08 99.5
3 SiO2 (spherical) 15–20 60.08 99.5
4 SiO2 20–30 60.08 99.0
5 SiO2 60–70 60.08 98.0
6 TiO2 (rutile) 30 79.87 99.9
7 TiO2 (anatase) 15 79.87 99.5
8 TiO2 (anatase) 18 79.87 99.9
9 TiO2 (anatase) 30 79.87 99.9
10 ZnO 10–30 81.38 99.0
11 ZnO 35–45 81.38 99.0
12 ZnO 80–200 81.38 99.9

a Denomination of particles.
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individual effective concentration and the fraction of the
component within the mixture, respectively.

The model deviation ratio (MDR) values were used to
quantify the interaction between the mixture components,
and determine the mixture toxicity type of the interactions.
MDR is defined as:

MDR ¼ Predicted ECx of mixture
Observed ECx of mixture

(2)

where the predicted ECx indicates the effective concentration
of a mixture based on the predictive model (i.e., the CA
model), and the observed ECx is the effective mixture
concentration obtained from the experimental toxicity test.
This study used the CA model, which is recommended as a
default approximation for mixtures, to predict the mixture
toxicity. Based on the MDR value, the combined effects were
divided into three groups in this study: synergistic (MDR >

2), additive (0.5 ≤ MDR ≤ 2), and antagonistic (MDR < 0.5).

2.6 Nano-QSAR model development

2.6.1 Mixture descriptor calculations
Experimental descriptors. In the present study, the five

experimental descriptors, excluding molecular dynamic (MD)
calculations, were defined as follows: 1) core diameter, 2)
molecular weight, 3) specific surface area, 4) concentration,
and 5) hydrodynamic size. The information on the core
diameter, molecular weight, and specific surface area given
by the material safety data sheet (MSDS) from US Research
Nanomaterials (Huston, HX USA) was used. Hydrodynamic
size information was obtained by measuring the Z-average
size using DLS.

Descriptor calculations using MD. Molecular descriptors
calculation is the most critical step in the development of
nano-QSAR models. MD-based optimal descriptors were
employed to describe the engineered MONPs structure
information by characterizing each engineered size of the
MONP structure and calculating the properties of the
MONPs. The unit cells of the MONPs were replicated in all
three dimensions using the Open Visualization Tool (OVITO)
to create MONPs of engineered size. The resulting spherical
MONPs were generated by removing all atoms outside the set
radius of the produced NPs, and maintaining the
electroneutrality of the final MONPs. The potential energies
of the atoms were calculated based on the third-generation
charge-optimized many-body (COMB3).20 These calculations
were performed under periodic boundary conditions in all
three Cartesian directions using the LAMMPS software. The
length of the simulation box in each direction was much
larger than the diameter of the MONP, such that all atoms
and interatomic interactions of the MONPs were contained
within the box. During the LAMMPS simulation, structural
optimization was performed through the energy
minimization process, and the energy and characteristics of
the structure were calculated. The interactions and potential

energies between the atoms are defined by a molecular
mechanical force field.

Mixture descriptor calculations. The mixture descriptor
(Dmix) is a hypothetical descriptor that measures the
contribution of a component to the overall activity of a
mixture.6 Based on theoretical considerations, the descriptors
of the components were obtained by combining them
numerically. Previous studies4,7,8,11 used the arithmetic mean
(eqn (3)) to calculate the mixture descriptors of the nano-
mixtures:

Dmix = x1D1 + x2D2 (3)

where x1 and x2 are the mole fractions, and D1 and D2 are the
descriptors of the individual components in the mixture. For
user convenience of the developed model, the mole fraction
and core diameter of every single substance constituting the
mixture were also included as descriptors and used without
using Dmix. A total of four descriptors (NP1 mole fraction,
NP2 mole fraction, NP1 core diameter, and NP2 core
diameter) were used as a single descriptor to identify the
effect of individual NPs on the mixture toxicity.

Descriptor selection. Two types of models were developed
(descriptor-based and calculation descriptor-based) with a
component-based approach to predict the log EC50 and log
EC10 of the MONPs mixtures. In addition, all single
descriptors (independent variables) correlated with the
luminescence inhibition (dependent variable). Descriptors,
which indicate theoretical properties, were derived from force
field calculations (MD calculations), corresponding to the
arithmetic means of the potential energies for specific atom
types and locations in the MONP.

The main advantages of these novel nano descriptors,
compared to previously published descriptors for MONPs,
can be summarized as follows:

1. These descriptors are theoretically based solely on the
unit cell structure and COMB3 potential parameters, which
are directly available for many compounds or derived from
quantum chemical calculations.

2. The descriptors indicate inherent particle size-
dependent properties.

3. Overall, the inter-correlation among the descriptors is
low.

These descriptors were used selectively to build a model.
In model development, having too many descriptors
increases the model complexity, as well as the risk of
overfitting. Therefore, dispensable descriptors were removed,
and only vital descriptors were used to build the model.
Generally, a correlation coefficient of (r) > ⌊0.9⌋ is interpreted
as having a strong association. Therefore, a correlation
analysis was performed to select one of these descriptors
when the correlation coefficient exceeded 0.9 between several
descriptors. The descriptor selection, correlation analysis,
and model development were performed using R software.
Based on the correlation analysis results, mixture descriptors
were calculated using Dmix for the remaining single
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descriptor. Subsequently, the recursive feature elimination
(RFE) algorithm was applied to define only the essential and
relevant features of the dataset. RFE is one of the most
preferred feature selection algorithms for analyzing datasets
and achieving the best model performance.21,22 The RFE
algorithm is a method wherein characteristics with higher
feature importance corresponding to the desired number of
features become the final feature selection result. With a
range of descriptors from 1 to 20, the RFE algorithm was
applied to determine the most appropriate number and type
of descriptors.

2.6.2 Data splitting for model development. For the
training and evaluation of the model, the MONPs
experimental data were split into two sets. The training set
(to develop a nano-QSAR model) and test set (to measure the
generalization ability of the model) guarantee a balanced
distribution of MONPs covering the entire range of both
training and test sets (Fig. 1). If data points from the training
set were used in the test set, the evaluation would always
result in high performance as the model already knows the
data point. As a result, the two sets had to be strictly
separated. Therefore, the external validation was assessed by
randomly splitting the data set into a training set and a test
set at 80% and 20% of the data set, respectively. Details of
the separation results are provided in the supplementary
data. For log EC50, 44 data points were split into groups of 37
and 7 for the training and test sets, respectively. Likewise, for
log EC10, 85 data points were divided into 68 and 17 in the
training and test sets, respectively.

2.6.3 Applied machine learning algorithm. Four machine-
learning algorithms (RF, SVM, MLR, and BRNN) were applied
to develop a nano-mixture QSAR model with associated R
packages (‘RandomForest’, ‘e1071’, ‘statas’, and ‘brnn’,

respectively). RF is one of the most powerful algorithms for
nonlinear models, and is a classifier ensemble composed of
numerous decision trees. The hyper-parameter ‘mtry’ was
used in the RF, which defines the number of variables
randomly sampled as candidates at each split, set in the
range of 2 to 7. The eps-regression type and polynomial
kernel were used in the SVM algorithm. As hyperparameters,
degree = 2, scale = 0.1, and C = 0.25, were selected as the
optimal values. The neuron range was set from 1 to 3 for the
BRNN algorithm. The root mean square deviation (RMSD)
was used to select the optimal model using the smallest
value. We used R (R Core Team, 2021)23 and RStudio
(RStudio Team, 2021)24 to develop the predictive models.

2.6.4 Model validation. Model validation is critical for
guaranteeing that a fitted model can effectively predict
responses for future or unknown subjects. In addition, any
QSAR model must comply with the Organization for
Economic Cooperation and Development (OECD)
recommendations. The goodness-of-fit was evaluated by
calculating the squared correlation coefficient (R2), and
adjusted correlation coefficients between the observed and
predicted values (AdjR2).25 Furthermore, the robustness and
internal predictivity of the models were verified using a 10-
fold cross-validation algorithm. The Y-randomization
method26 based on the Z-score was used to ensure the
reliability and robustness of the developed model. Rtrain

2

values of models built from the shuffled data were used to
calculate the Z-score for validation of the final models:

Zscore ¼
Rtrain valð Þ2 − R̅ ̅ ̅ ̅ ̅ ̅ ̅ ̅

train valð Þ2

σrand
(4)

where Rtrain(val)
2 is the Rtrain

2 value of the validated model, and
σrand are average and standard deviation of Rtrain

2 obtained
from ten randomly shuffled datasets. A Zscore greater than
three indicates that the validated model is unique, statistically
significant and robust when compared with models developed
with random data. External validation is essential in
determining both the generalizability and external predictivity
of the nano-mixture QSAR models for the MONPs not involved
in model training. In the present study, the external validation
was assessed by randomly split test sets, 20% of the data set,
ten times, as described in section 2.6.2.

2.6.5 Evaluation of the predictive models. Statistical
quality of the activity prediction was defined by using the
number of variables that enter a QSAR model using the FIT
Kubinyi function (eqn (5)).27 A criterion closely related to the
F-value was proven to be valid:

FIT = R2(n − k − 1)/(n + k2)(1 − R2) (5)

where n is the number of data points, and k is the number of
variables in the QSAR equation. The FIT criterion has a low
sensitivity toward changes in k values if they are small, and
there is a substantial increase in sensitivity for large k values.

Fig. 1 A scheme for developing the nano-quantitative structure–
activity relationships (QSAR) model.
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The best model is one that possesses a high value for this
function. Therefore, this was used as a criterion to confirm
the robustness of the QSAR models developed in this study.

3. Results and discussion
3.1 Characteristics of MONPs

Previous studies have observed the aggregation of MONPs.
Our study also revealed the same trend, as displayed in
Table 2 (for single) and Table S3† (for the mixture). The
hydrodynamic size of the MONPs in the solution increased
considerably compared with the diameter of the engineered
MONPs. The behavior of NPs entering the marine
environment could change owing to their intrinsic chemical
signature, and the physical and chemical properties of the
receiving water bodies (i.e., temperature and pH).28 As such,
the hydrodynamic diameters, which describe sizes more
precisely in an aqueous environment, were much larger than
their advertised sizes, reflecting considerable aggregation of
the NPs.

Additionally, the MONPs aggregation tendency was
ascribed to their relatively low zeta potential (<|30 mV|). The
ultrasonic probe disperses MONPs with the help of acoustic
ultrasonic forces, which generate sound waves to help break
down the agglomeration. Adams et al. (2006)29 reported that
the aggregation of particles in water led to their actual size in
suspension differing widely from that of the dry powders.
Comparing the anatase and rutile structures of TiO2 30 nm,
anatase has a lower absolute zeta-potential and larger
hydrodynamic size, indicating a higher aggregation tendency
for anatase than rutile. Even though they have the same
atomic compositions and sizes, the differences in structure
and shape induce different physicochemical properties. In
addition, the physicochemical properties, fate, and toxicity
can vary depending on the structural properties of the same
material.

The hydrodynamic size ranges were TiO2 (anatase) (1509–
2274 nm) > ZnO (1171–1954 nm) > TiO2 (rutile) (1875 nm) >
SiO2 (509.7–1079 nm). As the zeta potential of ZnO is higher
than that of other MONPs, it has a relatively strong negative

charge on the surface. NPs with a positive surface charge
tend to exert higher toxicity on bacteria.30 However, ZnO is
negatively charged and exhibited the highest toxicity in
several studies, indicating that the surface charge is not a
critical factor for NP toxicity.31 In the present study, 10
MONPs, except for two (TiO2 anatase, 15 nm, and 30 nm),
had a positive surface charge.

3.2 A. fischeri toxicity test

3.2.1 Single MONPs dose–response curves (DRCs). The
toxicity of the 12 MONPs was evaluated. As shown in Fig. 2,
significant dose-dependent inhibition of bioluminescence
was observed with an increase in NP concentration,
suggesting that the MONP toxicity is dose-dependent. Among
the NPs, ZnO exhibited the highest toxicity (0.012–0.034
mM), whereas SiO2 (7.464–63.131 mM) and TiO2 (9.841–
58.042 mM) were relatively less toxic. According to previous
studies, ZnO shows relatively higher toxicity than other
NPs.29,32 All 12 single MONPs had EC10 values, with a total of
six MONPs obtained up to EC50 values. For EC10 and ZnO in
all three size ranges, SiO2 showed 54.183 mM at 60–70 nm,
TiO2 (rutile) showed 318.642 mM at 30 nm, and TiO2

(anatase) showed 23.573 mM at 18 nm. Table S2†

Table 2 Particle characteristics of single MONPs

No. Particlea MONPs diameter [nm] Specific surface area [m2 g−1] Hydrodynamic size in 2% NaClb [nm] Zeta-potential [mV]

1 SiO2 8 185 614.1 −5.79
2 SiO2 (porous) 15–20 640 784.8 −4.65
3 SiO2 (spherical) 15–20 170–200 509.7 −5.52
4 SiO2 20–30 180–600 358.9 −3.56
5 SiO2 60–70 160–600 1079 −14.80
6 TiO2 (rutile) 30 35–60 1875 −4.97
7 TiO2 (anatase) 15 60 1571 0.33
8 TiO2 (anatase) 18 200–240 1509 −0.17
9 TiO2 (anatase) 30 50 2274 1.73
10 ZnO 10–30 35 1434 −6.45
11 ZnO 35–45 85 1954 −15.50
12 ZnO 80–200 20–60 1171 −10.12
a Denomination of particles. b All DLS measurements were performed in triplicate.

Fig. 2 Dose–response curves (DRCs) for A. fischeri growth inhibition
of single metal oxide nanoparticles (MONPs). ZnO (blue lines), TiO2

anatase (red lines), TiO2 rutile (green lines), and SiO2 (black lines).
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summarizes the parameter values of all best-fitting regression
models for the DRCs of single MONPs.

3.2.2 Binary nano-mixtures DRCs. Binary mixture DRCs
(Table S4†) were experimentally evaluated with two different
equitoxic levels (EC50 and EC10 ratio mixtures) and a EC10 +
EC50 mixture based on a single toxicity result. Mixture toxicity
analysis was performed for 93 binary mixtures, but only 85
mixtures exhibited levels above EC10. As shown in Table S4,†
the best-fitting curves for the 85 mixtures had high
regression coefficients (R2), ranging from 0.749 to 0.999.
More than 10% effect concentrations could not be obtained
under the testing conditions, which could be due to the
limited water solubility or nontoxicity. As a result, 44
mixtures reached up to EC50, and 39 mixtures reached up to
EC10. All substances showing EC50 values in the mixture and
six MONPs showing EC50 values at a single level were used as
constituents of the mixture.

Table S4† illustrates DRC information for the observed
and predicted bioluminescence inhibition of A. fischeri by the
CA model for the binary mixtures based on ratios at 50% and
10% effective inhibition concentrations. We calculated MDR
values to quantify the toxicity interactions between MONPs.
Based on the MDR value, we divided the combined effects
into three types:

For EC50, 41% (n = 18) showed synergism, 52% (n = 23)
showed additive, and 7% (n = 3) showed antagonistic
interactions among the mixtures. For EC10, 61% (n = 52)
showed synergism, 31% (n = 26) showed additive, and 7% (n
= 7) showed antagonistic interactions. In particular, at the
EC10 level, the synergism was found to be as much as 61%,
and there was a mixture that increased up to 65.486 times
from the concentration addition predictions. These results
show that synergism due to mixture toxicity is more likely to
appear at the EC10 level, which has a low effect concentration

value. This indicates the need for the regulation of
nanomaterials and the consideration of mixed toxicity, not
just the level of a single substance. For more details about
the MDR accumulative frequency and the pie chart of the
toxicity interaction, please refer to Fig. 3.

3.3 Nano-mixture QSAR model development

3.3.1 Experimental and calculated descriptors. A total of
26 single descriptors were derived from the size (five
descriptors), experimental conditions (seven descriptors), and
nano-based characteristics (14 descriptors) used in the model
development stage.

The proposed methodology for computing the additive
descriptors for mixture MONPs were applied, and we
calculated a set of mixture descriptors reflecting the
properties of the log EC10 (n = 85) and log EC50 (n = 44) values
of the MONP mixtures. The RFE algorithm was applied for
the descriptor selection process. As a result, nine descriptors
were selected for all descriptor-based models (including
experimental properties), and seven descriptors were selected
for the calculation-based model (Fig. 4). By combining the
experimental and theoretical studies (i.e., toxicity data
obtained for the A. fischeri and selected additive structural
descriptors for the nano-metal oxide mixtures), we have
developed two types (all descriptor-based and calculated
descriptor-based) of statistically significant nano-mixture
QSAR models that reliably predict the mixture toxicity.

From two types of descriptor sets, using four algorithms
(RF, SVM, BRNN, and MLR), we obtained eight models for
predicting two endpoints, each log EC50 and log EC10 of the
MONP mixtures.

3.3.2 Mixture toxicity prediction and validation. Following
the OECD QSAR validation recommendations, all nano-

Fig. 3 Model deviation ratio (MDR) value chart of the binary mixture interaction between the metal oxide nanoparticles (MONPs) EC50 ratio (Fig.
3a) and EC10 ratio (Fig. 3b). Cumulated frequency of MDRs at EC50 ratio (Fig. 3c) and EC10 ratio (Fig. 3d).
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mixture QSAR models were validated (internally and
externally). All developed models were employed to predict
the test set for external validation. As shown in Fig. S4,† a
comparison between the predicted and observed log EC50 and
log EC10 values illustrates the goodness-of-fit and high
predictive ability of the four models, with Rtrain

2 showing the
average result of 10-fold cross-validation. Among the four
algorithms, the RF-based models showed good performance
in predicting the toxicity of log EC50 and log EC10 for both
types of descriptors. For predicting log EC50, the all-
descriptor based model showed R2 = 0.924 and adjR2 = 0.818,
whose R2 value is highest among the eight models. The

calculation-based model yielded R2 = 0.866 and adjR2 =
0.705. For predicting log EC10, the all-descriptor-based model
showed R2 = 0.901 and adjR2 = 0.789, whereas the
calculation-based model showed R2 = 0.887 and adjR2 =
0.766. All RF-based models showed high correlations (adjR2

> 0.7) between the experimental and predicted values.
Besides the RF algorithm, the other three algorithms showed
lower adjR2 than R2, which indicated that the selected
descriptors may have relatively less importance in the three
algorithms. In addition, the results suggest that the
presented RF-based nano-mixture QSAR models have
satisfactory prediction and generalization performances
(similar values) (Fig. 5). The Y-randomization test yielded
Zscore values of 15.66 and 6.31 for the RF-based model
(calculated descriptor-based) built from log EC50 and log
EC10, respectively (Tables S5 and S6†). Therefore, the
calculated descriptor-based RF model is statistically
significant and unique when compared with models
developed with random data. While most previous
studies4,7,8,11 have indicated that the cytotoxicity of the
heterogeneous metallic TiO2 NPs was linearly dependent on
the descriptors, the results of our study suggest that the
toxicity of the MONP mixtures is nonlinearly dependent on
the mixture descriptors.

3.3.3 Model evaluation. Firstly, from the perspective of
model performance in predicting the mixture toxicity of the
MONPs, nano-mixture QSAR models showed good predictive

Fig. 4 Descriptors for developing the nano-QSAR model.

Fig. 5 Model performances for predicting log EC50 and log EC10 of the metal oxide nanoparticles (MONPs). These are descriptor-based models
(Fig. 5a) and calculated descriptor-based models (Fig. 5b).
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power for RF-based models (Fig. 5 and 6). The calculation-
based RF model for predicting log EC10 showed the highest
FIT value (FIT = 4.490) among the 16 models. To predict the
log EC50, the all-based RF model showed the highest FIT
value (FIT = 4.409) and the second-highest value. These two
nano-mixture QSAR models constructed with the RF
algorithm were recommended to predict the mixture toxicity

for MONPs with unknown experimental values. The resultant
model can be described as a calculation-based model that is
as effective as an experiment-based model. This means that
we can predict the toxicity of metal-oxide NPs by calculating
only the properties of the individual components, without
experimentation or sample measurement.

Secondly, from the perspective of the model application
coverage, the nano-mixture QSAR model can predict the SiO2,
TiO2 (anatase), TiO2 (rutile), and ZnO mixture toxicity.
Although the nano-mixture QSAR model can predict the
mixture toxicity of MONPs, its application coverage needs to
be extended for various MONPs.

Lastly, from the data availability perspective, the nano-
mixture QSAR model has a notable characteristic advantage
in that it does not require the mode of action (MoA)
information tailored to the target organism, unlike
conventional models. Conventional models require toxicity
endpoints (i.e., the CA model) and MoA information to
predict the mixture toxicity. Since the calculation-based
model indicated good performance, the nano-mixture QSAR
model could be used without any experiments.

This section addresses the advantages and disadvantages
of the nano-mixture QSAR model from three perspectives:
model performance, application coverage, and data
availability.

Fig. 6 Kubinyi function (FIT) of the RF-based model predictions for
log EC50 and log EC10 of MONPs.

Fig. 7 Applicability domains of the random forest (RF)-based models predicting log EC50 (Fig. 7a and b) and log EC10 (Fig. 7c and d). All descriptor-
based models (Fig. 7a and c) and calculated descriptor-based models (Fig. 7b and d).
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3.3.4 Applicability domain analysis. According to OECD
guidelines,33 the OECD principle states that “a (Q)SAR should
be associated with a defined domain of applicability”. The
applicability domain (AD) represents the response and
chemical structure pace, in which models provide predictions
with a given reliability. The ADs in the present study were
obtained by applying the Student's t-distribution on
Euclidean distances (structural domain) and standardized
residuals (response domain) of a training dataset to define
the space in which reliable predictions are obtained at a
certain confidence.2 The red elliptical boundary
corresponded to a confidence interval of 95%, and the
toxicity prediction for the data present inside the AD
designed by the red ellipse was reliable (Fig. 7). For the
models predicting log EC50, all descriptor-based and
calculated descriptor-based models, two data points fell
outside the confidence area of 99%. Regarding both models,
one is too far from the structural domain (Euclidean
distances are greater than 0.4), and the other has a high
standardized residual value (Fig. 7a and b). For the models
predicting log EC10, all descriptor-based and calculated
descriptor-based models, five data points fell outside the
confidence area of 99%. For all descriptor-based models,
three data points were too far from the structural domain,
and two data points had high standardized residual values
(Fig. 7c). For the calculated descriptor-based models, four
data points were far from the structural domain, and the two
data points had high standardized residual values (Fig. 7d).
Nano-mixture QSAR models in previous studies4,7,8,11,14 were
limited to only TiO2-based nano-mixtures and limited in
nano-size. The QSAR models in the present study have

exhibited an extended applicability domain in which toxicity
is based on TiO2, SiO2, and ZnO of various sizes up to 140
nm. As various types of NPs can be released into the
environment, our models were limited to these four types of
MONPs. Additional data on other metal oxide-based nano-
mixtures should be collected in the future to develop
predictive models with a larger applicability domain.

3.3.5 Descriptor importance and mechanistic
interpretation. The relative importance of the descriptors in
the models predicting log EC10 and log EC50 is shown in
Fig. 8. The importance was measured by the weight of
descriptors in the RF-based model, with higher weights
indicating more relevance to the accurate prediction
endpoint. For the descriptor-based model to predict log EC50,
the specific surface area, mixture concentration, and mixture
molecular weight were the three most important descriptors
(Fig. 8a). For all descriptor-based models used to predict log
EC10, the mixture concentration, hydrodynamic size, and
mixture molecular weight were the three most important
descriptors (Fig. 8c). The specific surface area is the most
important factor, especially for a high concentration ratio
(log EC50). This result is consistent with the fact that NPs are
characterized by a large specific surface area, which
determines their high reaction capacity and activity. Both
models agree that the mixture concentration and mixture
molecular weight are important and relevant for predicting
the mixture toxicity. In addition, the hydrodynamic size is
important and relevant, especially for low concentration
ratios (log EC10). This result is in agreement with a previous
study, since all powders resulted in similarly sized particles
in suspension, regardless of the advertised powder size, and

Fig. 8 Relative importance of descriptors in random forest (RF)-based models predicting log EC50 (Fig. 8a and b) and log EC10 (Fig. 8c and d). All
descriptor-based models (Fig. 8a and c) and calculated descriptor-based models (Fig. 8b and d).
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that advertised particle size did not affect the antibacterial
activity.1 For the calculated descriptor-based model, cohesive
energy showed the highest relative importance in both the
log EC50 and log EC10 prediction models, and identified the
most influential properties of the MONPs mixture to A.
fischeri.

The cohesive energy (EC(n)) is defined as the difference
between the average energy of the atoms in solid and isolated
atoms, where n denotes the number of atoms in the material.
Cohesive energy is considered one of the most fundamental
thermal properties that describes the inner structural energy
of nanoparticles, and shows how strongly atoms hold
together. It is well known that cohesive energy is a parameter
that describes the bond strength of a material. Decreasing
the cohesive energy of nanoparticles reduces the strength of
the corresponding metallic bond. Both experimentally and
theoretically, it has been well established that the cohesive
energy of nanoparticles decreases with decreasing particle
size.34 The mechanical–electrical properties change with the
size and shape of the nanomaterials.35 The size effect is
prominent in nanostructures up to the size limit of
approximately 30 nm. However, the effect of size becomes
less significant when the size is more than 30 nm,36 and our
results showed the same trend. The cohesive energy
decreases with a reduction in the size of the nanomaterials
owing to an increase in the number of dangling bonds in the
nanomaterials. The decrease in the cohesive energy of
nanomaterials results in a decrease in the melting
temperature and an increase in the energy bandgap, as is
corroborated by previous studies.35,37 The energy bandgap
can be described as the variation between the valence and

conduction energy bands of the Gibbs free energy.35

Additionally, the cohesive energy (EC(n)) determines the size
dependence of several physicochemical properties of
materials, such as the evaporation temperature, melting
temperature, formation enthalpy, surface energy, diffusion
activation energy, and bandgap energy.

Consequently, the cohesive energy investigation has
become one of the most important topics in the
thermodynamics of materials. This is directly related to the
thermal stability of the nanoparticles. Therefore, it can be
considered that the energy that induces changes in the
interactions in oxides is an important property of toxicity. In
addition, both models agree that the mole fraction (MONP1
mole fraction, MONP2 mole fraction of components in
mixtures) is important and relevant for predicting the
mixture toxicity. Based on the relative importance plot for all
RF-based models (Fig. 8), it can be inferred that the MONP
size had little effect on mixture toxicity.

3.4 Implementation of the RF-based QSAR model

An application with a graphical user interface was developed
to enable users to use our model (Fig. 9). This application
can be accessed at https://mjna.shinyapps.io/monps/. After
accessing the website, users can view two subcategories: “log
EC10” and “log EC50”. The user might need to set parameters
for predicting the mixture toxicity value (e.g., MONPs type,
core diameter, and mole ratio of NPs). Users do not need to
input molecular dynamic descriptors because they have
already been calculated between 1 and 100 nm on the web
server in the DB format. The application uses user input

Fig. 9 Screenshot of the prototype of the nano-mixture quantitative structure–activity relationship (QSAR) for the metal oxide nanoparticles
(MONPs).
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data, the MD descriptor corresponding to the input data is
called from the built-in DB, and the descriptor is calculated.
Then, the Dmix descriptors are calculated, the prediction is
run using pre-trained models in this study, and the predicted
mixture toxicity value is shown (log EC10 and log EC50). The
application is currently limited to mixtures of SiO2, TiO2, and
ZnO MONPs. However, in the future, we might collect more
mixture toxicity data and train models again to expand the
applicability domain of the application. Furthermore, it will
be possible to develop a model based on the toxicity data of
MONPs on human cells, and expand it from environmental
toxicity to human toxicity.

4. Conclusions

In this study, the toxicity of 12 MONPs (e.g., four types of
MONPs) and their binary mixtures (93 samples) were tested
at high and low effective concentrations (EC50 and EC10

ratio mixtures) and EC50 + EC10 on the bioluminescent
bacteria A. fischeri. Toxicological interactions were evaluated
based on the MDRs between the observed and predicted
toxicity values. In addition, the CA model predicted the
mixture toxicities to evaluate their toxicological interactions
(antagonistic, additive, and synergistic effects) based on the
MDR values. Nano-mixture QSAR models were successfully
developed in this study to predict the mixture toxicity of
MONPs using experimental toxicity data. The proposed
approach is the first model of molecular dynamic (MD)
descriptors to characterize the structure of nano-metal
oxides and develop a mixture toxicity prediction QSAR
model. A significant advantage of this proposed approach
is that it allows the description of the properties of large
(up to 140 nm) MONPs. In addition, we present an easily
applicable model for the prediction of the mixture toxicity
of MONPs in EC50 and EC10 (which is similar to the NOEC
value). The main findings are summarized as follows: (1) to
describe the structure and properties of various sized
MONPs, and (2) act as an efficient tool to predict the
mixture toxicity of MONPs of various sizes and
compositions. Compared to previous nano-mixture QSAR
models, the newly developed models in the present study
extended the applicability domain to a broader domain,
where the toxicity of various sizes of metal oxide-based
nano-mixtures.
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