Recent progress in ultraviolet photodetectors based on low-dimensional materials†
Abstract
Ultraviolet (UV) photodetectors (PDs) are crucial for various advanced applications, yet conventional technologies suffer from limitations like low sensitivity, slow response, and high costs. Low-dimensional materials (LDMs) have emerged as a promising alternative due to their unique optoelectronic properties, including quantum confinement, tunable bandgaps, and high carrier mobility. While existing reviews on UV-PDs often focus narrowly on specific materials or structures, this review offers a comprehensive overview of LDM-based UV-PDs, covering 0D, 1D, and 2D materials and their heterostructures. We highlight recent advances that enhance UV-PD performance across the full UV spectrum, addressing challenges such as limited spectral range and high dark current. The review also explores diverse applications, from medicine to space science, demonstrating the growing impact of LDM-based UV-PDs. By focusing on the latest developments and addressing research gaps, this review provides essential insights into the future of UV photodetection.
- This article is part of the themed collection: Recent Review Articles