Issue 2, 2025

Engineered biocatalytic architecture for enhanced light utilisation in algal H2 production

Abstract

Thin-layer photosynthetic biocatalysts (PBCs) offer an innovative and promising approach to the solar-powered generation of renewable chemicals and fuels. Thin-layer PBCs incorporate photosynthetic microbes, engineered for the production of targeted chemicals, into specifically tailored bio-based polymeric matrices. This unique integration forms a biocatalytic architecture that allows controlled distribution of light, nutrients, and substrates to the entrapped cells, optimising their performance. The research outlined in this study offers a systematic engineering approach to developing a biocatalytic architecture with improved light utilisation and enhanced photosynthetic conversion of captured light energy to molecular hydrogen (H2), an important energy carrier and fuel. This was achieved by entrapping wild-type green alga Chlamydomonas reinhardtii and its mutants with truncated light-harvesting chlorophyll antenna (Tla) complexes within thin-layer (up to 330 μm-thick) polymeric matrices under sulphur-deprived conditions. Our step-by-step engineering strategy involved: (i) synchronising culture growth to select cells with the highest photosynthetic capacity for entrapment, (ii) implementing a photosynthetic antenna gradient in the matrix by placing Tla cells atop the wild-type algae for better light distribution, (iii) replacing the conventional alginate formulation with TEMPO-oxidised cellulose nanofibers for improved matrix stability and porosity, and (iv) employing a semi-wet production approach to simplify the removal of produced H2 from the matrix with entrapped cells, thus preventing H2 recycling. The engineered PBCs achieved a fourfold increase in H2 photoproduction yield compared to conventional alginate films under the same irradiance (0.65 vs. 0.16 mol m−2 under 25 μmol photons m−2 s−1, respectively) and maintained H2 photoproduction activity for over 16 days. This resulted in a remarkable 4% light energy to hydrogen energy conversion efficiency at peak production activity and over 2% throughout the entire production period. These significant advancements highlight the potential of engineered thin-layer PBCs for efficient H2 production. The technology could be adapted for biomanufacturing various renewable chemicals and fuels.

Graphical abstract: Engineered biocatalytic architecture for enhanced light utilisation in algal H2 production

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
12 Thg7 2024
Accepted
03 Thg12 2024
First published
11 Thg12 2024
This article is Open Access
Creative Commons BY license

Energy Environ. Sci., 2025,18, 937-947

Engineered biocatalytic architecture for enhanced light utilisation in algal H2 production

S. Kosourov, T. Tammelin and Y. Allahverdiyeva, Energy Environ. Sci., 2025, 18, 937 DOI: 10.1039/D4EE03075C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements