Mechanistic approaches for crosstalk between nanomaterials and plants: plant immunomodulation, defense mechanisms, stress resilience, toxicity, and perspectives

Abstract

Plants are challenged with unexpected and diverse environmental stresses in the era of climate changes. Plant development and metabolism are significantly hindered by both abiotic and biotic stresses, which lead to a reduction in the crop yield by 50–88% worldwide. Fortunately, plants have developed diverse defence mechanisms across multiple levels in response to environmental challenges. Plant defence mechanisms range from molecular-level modifications to morphological, physiological, anatomical, and biochemical characteristics. In addition, nanotechnology is a promising area of innovations in the field of plant sciences, and it is generating novel concepts for comprehending the optimal survival mechanism of stressed plants. Nanomaterials are considered regulatory molecules for plants owing to their ability to modulate an extensive array of physiological and biochemical processes, the plant immune system, stress-related gene expression, hormonal regulation, and the activation of anti-oxidative defence systems. However, the intricacies of interactions between nanomaterials and plants in terms of antioxidative and immunomodulatory effects are not yet fully explored. Thus, the present review elucidates the potential antioxidative and immunomodulatory regulation of nanomaterials in plants via an enhanced antioxidative system, reduced oxidative stress levels and reactive oxygen species (ROS) generation, upregulation of defense related gene expression, phytohormone regulation, and miRNA regulation. Further, the toxicity behaviour of nanomaterials in plants and developmental prospects are discussed to provide future directions in the area. Overall, this review provides new insights for the development of nanomaterials with potential immunomodulatory effects in plants for resistance against biotic and abiotic stresses.

Graphical abstract: Mechanistic approaches for crosstalk between nanomaterials and plants: plant immunomodulation, defense mechanisms, stress resilience, toxicity, and perspectives

Article information

Article type
Critical Review
Submitted
21 Thg1 2024
Accepted
10 Thg4 2024
First published
10 Thg4 2024

Environ. Sci.: Nano, 2024, Advance Article

Mechanistic approaches for crosstalk between nanomaterials and plants: plant immunomodulation, defense mechanisms, stress resilience, toxicity, and perspectives

R. Singh, P. Choudhary, S. Kumar and H. K. Daima, Environ. Sci.: Nano, 2024, Advance Article , DOI: 10.1039/D4EN00053F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements