Structural isomerism engineering regulates molecular AIE behavior and application in visualizing endogenous hydrogen sulfide†
Abstract
Hydrogen sulfide (H2S) is a critical bioregulator implicated in numerous physiological and pathological processes, including cancer and neurodegenerative diseases. Compared with traditional instrument analysis, fluorescence detection technology based on small molecules in real-time and in situ sensing H2S has attracted attention. In this investigation, we developed a system of coumarin-based fluorophores linked with aminopyridine via a dipolar imino-double bond. Their aggregation-induced emission (AIE) behaviors were further regulated via structural isomerism engineering. Owing to restricting intramolecular motions and high molecular dipole moment, 2-amino-pyridyl-substituted coumarin (CMR-o-Py) forms stable AIE nanoaggregates with brighter fluorescence than the others. The CMR-o-Py nanoaggregates serve as probes for sensing H2S with a detection limit of 18.1 μM in a hydrophilic environment via Michael addition between imino-bond and sulfide ions. The 1 : 1 stoichiometric binding energy constant between the probe and H2S is 5.68 × 108 M−1, and its half-time of the first-order binding reaction was estimated to be 4.85 min. Moreover, CMR-o-Py, with excellent biocompatibility, holds promise as an ideal sensor for endogenous H2S in living cells and onion tissues, further highlighting its potential application in biological fields.
- This article is part of the themed collections: Materials Chemistry of Fluorescence Bioimaging and Journal of Materials Chemistry B HOT Papers