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ents in synthesis of attapulgite
composite materials for refractory organic
wastewater treatment: a review

Ting Zhang, * Xiaoyi Huang, Jiaojiao Qiao, Yang Liu, Jingjing Zhang and Yi Wang*

Attapulgite clay, due to its unique crystalline hydrated magnesium–aluminium silicate composition and

layer-chain structure, possesses exceptional adsorption and catalytic properties, which enable it or its

composites to be utilized as adsorbents and catalysts for wastewater treatment. But the drawbacks of

attapulgite are also very obvious, such as relatively low specific surface area (compared to traditional

adsorbents such as activated carbon and activated alumina), easy aggregation, and difficulty in

dispersion. In order to fully utilize and improve the performance of attapulgite, researchers have

conducted extensive research on its modification, but few specialized works have comprehensively

evaluated the synthesis, applications and challenges for attapulgite-based composite materials in

refractory organic wastewater treatments. This paper provides a comprehensive review of controllable

preparation strategies, characterization methods and mechanisms of attapulgite-based composite

materials, as well as the research progress of these materials in refractory organic wastewater treatment.

Based on this review, constructive recommendations, such as deep mechanism analysis from molecular

level multi-functional attapulgite-based material developments, and using biodegradable materials in

attapulgite-based composites, were proposed.
1 Introduction

Organic pollution, particularly refractory organic pollution,
poses a signicant global environmental challenge due to its
profound toxicity to living organisms and humans. Refractory
organic pollutants (ROPs) comprise a diverse range of highly
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toxic compounds, including halogenated organics, surfactants,
nitro compounds, heterocyclic compounds, phenolic
compounds, and polycyclic aromatic hydrocarbons. These
compounds are notoriously resistant to microbial degradation,
oen undergoing slow and incomplete decomposition. Many
ROPs exert harmful effects on human health and the environ-
ment, with some even possessing carcinogenic properties.

The primary sources of wastewater contaminated with
refractory organics stem from various chemical industries such
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Table 1 Types and hazards of refractory organic substances

Refractory organics Sources Harmful effects References

Polycyclic aromatic hydrocarbons
compounds (PAHs), such as
naphthalene, anthracene,
phenanthrene, pyrene, etc.

Wood and coal burning, petrol and
diesel combustion, industrial
discharge, vehicular emission, etc.

Carcinogenic, teratogenic,
mutagenic and toxic

1–5

Heterocyclic compounds, such as
furan, pyrrole, thiophene, etc.

Domestic sewage treatment plants
and some chemical engineering
industries such as textile, dyestuff,
pharmaceutical and chemical
productions

Stable in nature, easy to
bioaccumulate, mutagenic and
carcinogenic

6–8

Organic cyanides, such as
acetonitrile, propionitrile,
acrylonitrile, etc.

Coking, electroplating and
pharmaceutical industries

Highly toxic. Short-term exposure to
cyanide could cause shortness of
breath and neurological diseases,
and prolonged exposure would lead
to nerve damage and even death

9–11

Synthetic detergents, such as
sodium alkylbenzene sulfonate,
sodium fatty alcohol sulfate, etc.

Laundry wastewater originated
from households, industries and
hospitals

Foaming thus affects biological
treatment effect and has
solubilization effect on polycyclic
aromatic hydrocarbons

12 and 13

Polychlorinated biphenyls (PCBs),
from PCB3 to PCB10

Preparation of capacitors and
transformers, oil for chemical
engineering

Entering the human body through
the food chain, causing acute
poisoning and carcinogenesis to the
human body

14 and 15

Plasticizers, such as phthalates,
aliphatic dicarboxylic esters, fatty
acid esters, etc.

Plastic products It is stable and has inhibitory effect
on human central nervous system

16

Synthetic pesticides, such as
organochlorine pesticides,
organophosphorus pesticides, etc.

Agricultural elds and non-
agricultural settings such as
households, industries, sport elds
and other urban green areas

Toxic and carcinogenic to humans 17 and 18

Synthetic dyes, such as methylene
blue, orange II, methyl violet, etc.

Textile industry High chroma, toxic and
carcinogenic

19 and 20

Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

2.
07

.2
02

4 
10

:3
4:

41
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
as coking, pharmaceuticals (encompassing traditional Chinese
medicine), petrochemicals/oil, textiles/printing and dyeing, and
paint manufacturing. Table 1 provides a comprehensive over-
view of common refractory organics, detailing their sources and
associated hazards. This type of wastewater typically exhibits
Yi Wang
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© 2024 The Author(s). Published by the Royal Society of Chemistry
a complex mixture of refractory organics and salts, character-
ized by high concentrations and poor biodegradability.

The pervasive threat posed by refractory organic compounds
to human health and ecological systems underscores the critical
importance of addressing their pollution control. As such, the
exploration of effective strategies for alleviating refractory
organic pollution has emerged as a vital research focus within
the environmental protection domain.

In recent decades, signicant research efforts have been
devoted to developing treatments for refractory organic pollut-
ants.21,22 A range of techniques has been explored for their
removal, including adsorption,23,24 biological treatment
processes,25–27 membrane separation,28,29 catalysis,30,31 and
advanced oxidation processes.32,33

Notably, catalytic oxidation processes have made consider-
able progress in treating refractory organics. These processes
encompass photocatalytic oxidation,23 catalytic wet air oxida-
tion,31 electro-catalysis,21,34,35 Fenton catalysis,36–40 semi-
conductor catalysis, and heterogeneous catalysis.35,41–43 Among
these, heterogeneous catalysis has emerged as a particularly
promising approach due to its ability to generate hydroxyl
radicals (cOH) and holes with strong oxidizing power. These
radicals can effectively decompose toxic, harmful, and non-
biodegradable macromolecular organic compounds into non-
toxic, biodegradable small molecular organic substances.
RSC Adv., 2024, 14, 16300–16317 | 16301
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Heterogeneous catalysis offers advantages such as a wide pH
range, no secondary pollution, and good reusability.44–46

Heterogeneous catalysts can be broadly categorized into bulk
catalysts and supported catalysts. Catalytic reactions primarily
occur on the surface of these catalysts. Supported catalysts are
particularly advantageous due to their high surface area and
abundance of active sites, which enhance their catalytic effi-
ciency compared to bulk catalysts.47 Supported catalysts typi-
cally utilize porous materials as supports, including carbon,48,49

graphene and its derivatives,50,51 oxides such as ZnO, SiO2,
Bi2O3,52–54 and clays.55,56 The active components, which can be
metals or metal oxides, are deposited onto the surface of these
supports to form the catalysts.
2 Attapulgite

Clays, including montmorillonite, kaolin, bentonite, and atta-
pulgite, have found application as natural, economical supports
for heterogeneous catalysis in wastewater treatment.57–60 Among
these, attapulgite clay distinguishes itself with its distinctive
crystalline hydrated magnesium–aluminium silicate composi-
tion and its unique layer-chain structural arrangement. It
exhibits exceptional dispersibility, high-temperature resistance,
salt resistance, and strong adsorption capabilities, alongside
good plasticity and cohesion.61,62 These attributes make it
a versatile material for use as an adsorbent or catalyst support
in the removal of hazardous substances.57–59

Structurally, attapulgite belongs to the monoclinic system
and features an acicular, slender hollow tubular structure
reminiscent of amphibole asbestos. Its ideal molecular formula
is Mg5Si8O20(OH)2(OH2)4$4H2O, and a diagram of its crystal
structure is presented in Fig. 1. This structure consists of eight
Fig. 1 The schematic diagrams of attapulgite crystal structure and its pr

16302 | RSC Adv., 2024, 14, 16300–16317
Si–O tetrahedrons arranged in 2 : 1 layers that extend along the
C-axis, and cations like Mg2+ and Al3+ are lled in coordination
octahedra formed by –O– and –OH, that is, two layers of silicon-
oxygen tetrahedrons sandwich a layer of magnesium (or
aluminium)- oxygen octahedron, creating pores parallel to the
C-axis between the [Si4O10] zones. These pores, with cross-
sectional radii ranging from 0.37 to 0.64 nm, are occupied by
water molecules. Some of this water is zeolite water aligned with
the ber axis, while the rest is crystalline water coordinated with
magnesium ions.63,64

Attapulgite's distinctive structure, characterized by a high
specic surface area and an unbalanced charge surface due to
its crystalline morphology and abundant internal channels,
endows it with remarkable properties such as excellent
adsorption, catalytic activity, heat resistance, and rheological
behavior. These qualities have led to its widespread application
across various domains,65–70 as illustrated in Fig. 1.

In addition, the crystalline water in the structure of atta-
pulgite is located on the surface of its channel, facilitating the
formation of hydrogen bonds with the adsorbate entering the
channel.61,62 Consequently, the surface of attapulgite is rich in
adsorption active sites, exhibiting a preference for the adsorp-
tion of polar molecules like water. Additionally, attapulgite clay
boasts impressive thermal stability and mechanical properties,
rendering it a versatile material commonly employed as a puri-
er, decolorizer, lter aid, and deodorant.65–68,70

Although the unique structure and properties of attapulgite
give it potential application advantages, its drawbacks are also
obvious: the specic surface area of attapulgite is still relatively
low compared to other commonly used adsorbents (such as
activated carbon, activated alumina, etc.), it is easy to agglom-
erate, not easy to disperse, has poor compatibility with other
operties and usages.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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substances, and the active substances are not easily uniformly
loaded during the preparation of catalysts. To address the
aforementioned issues, researchers have undertaken various
modications to attapulgite or have compounded it with other
substances. These modications aim to boost its specic
surface area, enhance conductivity, andmitigate its aggregation
tendencies. Additionally, the modications enable uniform
loading of active substances, increase the number of effective
catalytic active sites, and ultimately improve the catalytic
performance of the materials. Until now, there is a lack of
comprehensive and multi-dimensional literature summarizing
the latest progress in the application of modied attapulgite for
the removal of refractory organics from water, particularly
addressing the technical challenges and future research
avenues. A systematic review of the latest achievements in
attapulgite-based material development and mechanism
exploration is crucial for guiding future research efforts and
promoting the large-scale application of these materials for the
removal of refractory organics from water. This review illumi-
nates diverse types of attapulgite-based materials, detailing
their preparation methodologies, characterizations, applica-
tions, and mechanisms, and it also highlights the associated
challenges and recommendations of improvement in this eld
of research.

3 Modifications of attapulgite and
their utilizations in treating refractory
organics

To enhance the specic surface area, porosity, adsorption
capacity, and catalytic performance of attapulgite, it is
commonly modied or combined with various functional
materials. The modication of attapulgite can be achieved
through numerous techniques, which can be broadly catego-
rized based on the type of modier used: heat modication,
acid/alkaline/salt modication, organic modication, carbon-
based materials modication, and metals/metal oxides
modication.

Heat and acid/alkaline/salt modication are straightforward
methods, primarily aimed at increasing the specic surface area
of attapulgite by removing water, melting impurities and facil-
itating ion exchange. Liu et al.71 have conducted a relatively in-
depth discussion on these modications, and we will not
elaborate those further. Instead, this paper will primarily
explore the organic modication, carbon-based materials
modication, and metals/metal oxides modication of
attapulgite.

3.1 Organic modication of attapulgite

Organic modication involves the introduction of organic
functional groups onto the surface of attapulgite, which can
improve its compatibility with organic systems and enhance its
adsorption properties. Organic modiers commonly used for
this purpose include surfactants, silane coupling agents, and
polymers (Fig. 2). The are three typical ATP organic modica-
tion methods:
© 2024 The Author(s). Published by the Royal Society of Chemistry
(1) Graing: this method oen uses surfactants as modier
to change the ATP's surface functional groups, improving its
wettability, dispersibility, and compatibility with organic
matrices. Graing can be achieved through chemical reactions
that create covalent bonds between the organic molecules and
the ATP.

(2) Silane-coupling: silane coupling agents are used to
modify the surface of ATP and change its hydrophobicity. These
agents react with the hydroxyl groups on the ATP surface,
forming siloxane bonds that introduce organic functional
groups. This makes the ATP surface more hydrophobic, which
can be benecial for certain applications, such as the adsorp-
tion of organic compounds from aqueous solutions.

(3) Coating: coating involves the deposition of a thin layer of
organic material onto the surface of ATP. This layer can be
composed of polymers or other organic compounds and serves
to change the surface structure of ATP. Coating can improve the
mechanical properties, stability, and compatibility of ATP with
organic media. It can also provide additional functional groups
that can enhance the adsorption or catalytic properties of ATP.

3.1.1 Graing on attapulgite. Graing is considered as
a promising approach for ATP modication, because graing
process can provide functional groups which show helpful
properties for up-taking cationic, anionic and neutral pollutants
from aqueous media,72 which can help attapulgite to have
a better adsorption ability. Typically, functional groups graing
on attapulgite was prepared by gra copolymerization reactions
and attapulgite was oen modied with surfactants. Take NH2-
graed attapulgite as an example, the common modiers are
amino-terminated surfactants, such as polyacrylamide (PAM),73

octadecyl trimethyl ammonium chloride (OTAC),70,73 octadecyl
trimethylammonium bromide (OTAB) and dioctadecyl dime-
thylammonium bromide (DDAB).74 NH2-graed attapulgites
had higher adsorption capacity than before modication, and
they were used to adsorb dyes,75,76 phenol,65,77 tannin68 and
obtain high removal percentages. Attapulgite was also func-
tionalized by chloroacetic acid (CA) with –COOH functional
groups, improving its adsorption properties for MB and got
99.8% removal ratio aer modied.78

3.1.2 Modication of attapulgite with coupling agents.
Attapulgite is rich in Si–OH polar groups and can be modied
by coupling agents to change its surface property from hydro-
philic to hydrophobic. Silane coupling agents and titanate
coupling agents are usually used to modied ATP, and silane
coupling agents are the earliest developed andmost widely used
type of coupling agents.79 Silane coupling agents can improve
the surface properties of attapulgite at a very small dosage, take
3-aminopropyltriethoxysilane (APTES)75 as an example, its
modication mechanisms are as follow: APTES rst hydrolyzed
then combined with ATP by hydrogen bond, the hydroxyl on
ATP surface was replaced by silyl group and its surface changed
from hydrophilic to lipophilic, which makes ATP adsorb some
oil pollutants.

More researches on the modication of attapulgite by
coupling agents are focused on the adsorption of heavy metals
aer modication, which will not be mentioned here.
RSC Adv., 2024, 14, 16300–16317 | 16303
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Fig. 2 ATP organic modification methods.75,86–94 Copyright 2024, Elsevier.
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3.1.3 Modication of attapulgite with polymers. Polymer
compounds, such as chitosan, polyaniline and polyurethane,
can be used to prepare various of adsorbents by coating on the
surface of ATP with non-covalent bond. Chitosan itself can be
used as adsorbent for dyes, organic pesticides, fats, heavy
metals and other toxic substances in wastewater due to its active
sites –NH2 and –OH. Based on this, chitosan can be used to
wrap ATP and promote adsorption capacity. Chitosan-coated
attapulgite (CCATP) was prepared for removing the organic
pollutant tannic acid (TA) from aqueous solution with
maximum sorption capacity of 68 mg g−1.80 Chitosan func-
tionalized attapulgite clay nanoparticle adsorbent (ATP@CCS)
was fabricated by hydrothermal carbonization of chitosan at
a mild temperature and applied for methylene blue (MB)
removal from wastewater, and the calculated maximum
adsorption capacity could be up to 215.73 mg g−1 at 318.15 K.81

Sun et al.82 fabricated a composite CPA composed of uniform
puried attapulgite (PA) nanorods modied by chitosan under
acetic acid conditions. Beneting from the mesoporous struc-
ture of the PA nanorods and the carboxyl groups of chitosan, the
prepared hybrid CPA exhibited a quick response (2 min for 80%
removal ratio) and excellent adsorption capacity (the maximum
adsorption capacity could reach 112.07 mg g−1) towards HA.82

Aer coating attapulgite with polyaniline or polyurethane,
nitrogen containing groups are introduced to the surface of
attapulgite, which makes it have good adsorption effect on
heavy metals and organic pollutants. Wang et al.83 used poly-
aniline coated attapulgite to remove humic acid in water, and
16304 | RSC Adv., 2024, 14, 16300–16317
the adsorption effect of coated attapulgite was signicantly
higher than that of unmodied attapulgite, the maximum
adsorption capacity can reach 61.35 mg g−1. Dong et al.84

prepared a series of polyurethane–attapulgite porous (HATT/
PU) materials for the removal of MG dye from aqueous solu-
tions, and at the optimum conditions, the porous material had
the highest adsorption ratio of 99.51%.

3.1.4 Combination attapulgite with COFs. Jia et al.85 re-
ported a facile synthetic method of attapulgite@covalent
organic frameworks (ATP/COFs). Covalent organic frameworks
were synthesized from 1,3,5-triformylphloroglucinol and p-
phenylenediamine, which were graed onto attapulgite at room
temperature, and the composite was synthesized. The extract-
ing ratios of pyrethroids by ATP/COFs ranged from 71.2% to
88.7%. The removal ratios of methyl violet and tetracycline were
still remained at 77.6% and 60.2% of the initial adsorption
capacity aer ten adsorption–regeneration cycles via a facile
thermal regeneration strategy.

3.2 Modication attapulgite by carbon-based materials

Carbon-based materials modication, typically involves the
incorporation of carbonaceous materials like activated carbon
or carbon nanotubes, which can signicantly improve the
porosity and adsorption capacity of attapulgite.

3.2.1 Combination attapulgite with carbon. Carbon is
oen used as an additive for attapulgite to enhance its specic
surface area (Fig. 3 le). Tang et al.95 developed a cost-effective
attapulgite/carbon (APT/C) composite for wastewater treatment
© 2024 The Author(s). Published by the Royal Society of Chemistry
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using waste hot-pot oil as a carbon precursor through a facile
one-step calcination process. The optimal adsorption capacities
reached 215.83 mg g−1, and 256.48 mg g−1 for methyl violet and
tetracycline, respectively. Furthermore, they96 fabricated
magnetic attapulgite/carbon supported NiFe layered double
hydroxides (APT/C@NiFe-LDHs) based on the spent bleaching
earth via a facile and green hydrothermal approach. The
composites exhibited excellent adsorption capacities for meth-
ylene blue and chlortetracycline hydrochloride of 271.28 and
308.21 mg g−1, respectively. Li et al.97 used a novel low-cost clay–
biochar (APB) composite with potato stem and natural atta-
pulgite to enhance the removal efficiency of Noroxacin (NOR)
from aqueous solution. Batch sorption experiments indicated
that NOR was adsorbed to the clay–biochar strongly with
a maximum sorption capacity of 5.24 mg g−1, which was about
1.68 times higher than the pristine biochar (PB).

3.2.2 Combination attapulgite with graphene oxide (GO).
Graphene oxide (GO), as a graphene derivative, is a two-
dimensional (2D) structure material. GO (or rGO) is oen
combined with metals, metal oxides, polymer materials as
precursor or support carrier due to its special characters of easy
to functionalize and high controllability, it can also provide
large specic surface area to make the attached materials
disperse uniformly and prevent agglomeration.98,99 Recent
researches on combination ATP with GO are about making
composite membranes or catalysts. Cui et al.100 successfully
constructed a three-dimensional attapulgite (APT) layer with
a sandwich-like structure through a gentle and widely
Fig. 3 ATP modification by carbon-based materials (left)95–97,101,118,119 and

© 2024 The Author(s). Published by the Royal Society of Chemistry
applicable method, no need for any additional modication of
the original membranes. This method employs ordinary mate-
rial with underwater superoleophobicity towards the effective
and fast separation of different oil-in-water emulsions and
adsorption of organic dyes and heavy metal ions. Luo et al.101

assembled an attapulgite (ATP) nanobers/GO composite (ATP/
GO) membrane by ltration of mixed aqueous colloidal
suspensions of ATP and GO, which had a high water ux of
221.16 L m−2 h−1 bar−1, 7.7 times higher than pure GO
membrane. Wang et al.102 successfully fabricated graphene
oxide/attapulgite (GO/APT) composite membranes by the
vacuum-assisted ltration for efficient dyes wastewater treat-
ment. The water permeated ux was as high as 13.3 L m−2 h−1

of GO/APT membrane with preserving high rejection nearly to
100% for 7.5 mg per L Rh B wastewater under optimized
conditions. Zhang et al.103 prepared a novel rGO–ATP supported
Fe2O3 catalyst for oxidation of ciprooxacin and got over 80%
removal ratio at optimal conditions.

3.2.3 Combination attapulgite with g-C3N4. g-C3N4 is a two-
dimensional layered structure material similar to graphene. As
a new non-metallic photocatalytic material, g-C3N4 has a wider
absorption spectrum range and does not require ultraviolet
light, it can play a photocatalytic role under ordinary visible
light.104,105 Liu et al.106 synthesized attapulgite (APT) and C3N4

hybridized metal–organic frameworks (MOFs) via different
strategies, and systematically studied its adsorption properties
for alizarin yellow GG (AYGG). The result showed that APT/C3N4

had excellent adsorption capacity synthesized both by reuxing
by metal or metal oxides (right).109,113–115,120,121 Copyright 2024, Elsevier.
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method (366.0 mg g−1) and by hydrothermal method (271.8 mg
g−1).
3.3 Loading metal or metal oxides on attapulgite

Metals/metal oxides (zero valent iron, Cu, Co, Fe2O3, Fe3O4,
CuO, CeO2 et al.) modication involves the deposition or
incorporation of metal particles or metal oxides onto the
surface of attapulgite. This modication can introduce new
catalytic active sites, thereby enhancing the catalytic perfor-
mance of attapulgite for various reactions. The specic metals
or metal oxides used for modication depend on the desired
catalytic application (Fig. 3 right).

3.3.1 Loading zero-valent iron (nZVI) on attapulgite.
Nanoscale zero-valent iron (nZVI) technology is widely applied
to treating numerous organic and inorganic pollutants because
of its strong reducibility and high reaction activity.107 However it
is easy to be oxidized and agglomerate in water, in order to
overcome these shortcomings, attapulgite is used as a support
on which nZVI can be loaded and uniformly dispersed. For
examples, Frost et al.108 used attapulgite loaded nZVI to remove
methylene blue from water, and the loaded adsorbent has
higher adsorption capacity than before. A nanocomposite of
nZVI/ATP109 with nanoscale zero-valent iron (nZVI) directly
supported on attapulgite (ATP) was synthesized for activating
peroxymonosulfate (PMS) to generate reactive free radicals for
oxidation of quinclorac. The removal efficiency of quinclorac
was 97.36% in an hour using 0.5 g per L nZVI/ATP and 10 mM
PMS.

3.3.2 Loading Fe oxides on attapulgite. As active compo-
nents, Fe oxides are better than nZVI due to the fact that they are
not easy to lose and have broad environmental adaptability. In
these cases, metal salts were usually used as precursors, such as
nitrates, carbonates, sulfates and chlorides. Fe2O3/ATP was
oen used due to easy preparation and high catalytic effi-
ciency.110 Fe3O4 normally worked as the carrier of magnetic
material111 and it can also be applied with ATP to facilitate the
removal of cyanobacteria and heavy metals.112

Zhang et al.113 prepared the Fe3O4/ATP catalyst by impreg-
nation method, and nano-Fe3O4 particles were coated evenly
onto the surface of ATP. Fe3O4/ATP was used as the catalyst to
decolorize methylene blue (MB), and more than 99% MB
decolorization were achieved under the optimum conditions.

3.3.3 Loading multi-metal oxides on attapulgite. Multiple
metal oxide combinations can take an effect of synergistic
oxidation. Zhang et al.114 prepared multi-metal oxides loaded
catalysts (CuO–Fe2O3/ATP, CeO2–Fe2O3/ATP and CuO–CeO2–

Fe2O3/ATP) by impregnation method with CuO, CeO2 or Fe2O3

directly coated on ATP surface for the degradation of MB. Under
the optimum conditions, the as-synthesized three catalysts all
showed more than 99% degradation efficiency of MB. Various
metal oxides can also be loaded onto ATP in the form of alloys.
Tan et al.115 designed and prepared Bi2MoO6/attapulgite pho-
tocatalyst for the removal of tetracycline and formaldehyde, and
got 1.7 times of removal ratio higher than pure Bi2MoO6. For
endowing attapulgite-based catalysts with photocatalytic ability,
TiO2 is oen used as one of the active materials. An
16306 | RSC Adv., 2024, 14, 16300–16317
environmentally friendly photocatalyst was synthesized by
introducing BiOCl–TiO2 hybrid oxide onto the surface of atta-
pulgite (ATT) (denoted as ATT–BiOCl–TiO2)116 and used for the
decomposition of methyl orange (MO). It was found that 100mg
per L MO was totally decomposed under the UV light within
70 min and 92.57% of MO was decomposed under the visible
light within 120 min by using ATT–BiOCl–TiO2 as photocatalyst.
Magnetically separable attapulgite–TiO2–FexOy composites also
prepared for photodegradation of methyl orange under visible
light radiation and got the highest methyl orange degradation
ratio of 94.13% and COD removal of 90.91%.117

3.3.4 Compound modication of attapulgite. In some
cases, researchers hope to achieve multi functions of attapulgite
simultaneously, especially the excellent adsorption and catalytic
performance, therefore attapulgite is oen modied by
compound methods. Attapulgite is oen rstly modied by
organics then coated with metals or metal oxides, as shown in
Fig. 4. The surface modication of attapulgite by organics can
change the surface functional groups, hydrophobicity and pore
structure of attapulgite, and loading active components on ATP
can make it have high catalytic performance. Zhang et al.122

prepared catalyst Fe/OATP for HA–Na degradation. Fe/OATP is
a heterogeneous catalyst synthesized by loading active
substances—nanoscale zero valent iron—on the surface of
organo-attapulgite in which ATP was modied by octadecyl
trimethyl ammonium chloride (OATC), as seen in Fig. 4
(example 1). The removal ratio of HA–Na by Fe/OATP can reach
more than 97% under the optimum conditions. Chen et al.123

successfully fabricated polypyrrole/attapulgite-supported
nanoscale zero-valent iron (nZVI–Ppy/ATP) composites by
chemical oxidative polymerization and liquid-phase reduction
method (Fig. 4 example 2), and employed it to extract Naphthol
Green B (NGB) from aqueous solution. The results showed that
99.59% of NGB was removed using nZVI–Ppy/ATP aer 25 min.
Fe3O4/attapulgite/polyvinylalcohol composites124 were success-
fully prepared by the method of coprecipitation. The compos-
ites had the ability of treating methyl orange effectively in
neutral condition. When the dosage of H2O2 was 15 mL and the
laying time was 24 h, the efficiency of treatment was 99.99%.
Other porous supports are oen combined with ATP to improve
specic surface area, porosity and catalytic performance of ATP.
Li et al.125 prepared a novel ATP/Ce1−xZrxO2 nanocomposite by
a facile homogeneous deposition method. The catalytic activity
of ATP/Ce1−xZrxO2 was investigated by oxidizing methylene blue
with O3, and a maximum degradation ratio (99%) of methylene
blue is achieved. Single-atom Cu-supported attapulgite/polymer
carbon nitride (PCN/ATP) photocatalyst was successfully
synthesized and its degradation rate toward methylene blue
dye was 7.7 times higher than that of PCN (Fig. 4 example 3)
(Table 2).126
4 Characterizations of attapulgite
composite materials

The morphology and structure properties of attapulgite-based
composite materials play a crucial role in their adsorption
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The summary of different modified attapulgite

Modication methods Modiers Targets Applications Ref.

Organic modication Graing PAM, OTAC, OTAB, DDAB,
CA

To change the surface
functional groups of ATP

Adsorption of dyes, phenol
and tannin

65, 68, 73, 74
and 78

Silane-
coupling

APTES To change the
hydrophobicity of ATP
surface

Adsorption of oil pollutants 75 and 79

Coating Chitosan, polyaniline,
polyurethane

To change surface structure
of ATP

Adsorption of dyes, organic
pesticides, fats, and other
toxic substances in
wastewater

80–84

Modication ATP by carbon-
based materials

3D-C Carbon, biochar To enhance specic surface
area of ATP

Adsorption of dyes and
antibiotics

95–97

2D-C GO To enhance specic surface
area and conductivity of ATP

Removal of dyes 98–103

g-C3N4 To enhance specic surface
area and photocatalysis
ability of ATP

Removal of dyes 104–106

Loading metal or metal
oxides on ATP

Fe nZVI To improve reducibility and
high reaction activity of ATP

Adsorption and catalytic
reduction of dyes and
organic pesticides

107–109

Fe oxides Fe2O3, Fe3O4 To improve catalytic ability of
ATP

Catalytic reduction of dyes
and other organics

110–113

Multi-metal
oxides

CuO–Fe2O3, CeO2–Fe2O3,
BiOCl–TiO2

To achieve an effect of
synergistic oxidation

Catalytic reduction of dyes
and antibiotics

114–117

Compound modication of
attapulgite

Organics and metals or
metal oxides

To achieve multi functions of
ATP simultaneously

Catalytic reduction of dyes,
antibiotics and HA–Na

122–126
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and catalytic efficiency, making them directly relevant to their
performance. Characterization techniques such as BET, SEM,
TEM, FT-IR, XRD, and XPS are commonly used to analyze
attapulgite and attapulgite-based catalysts. These techniques
provide valuable insights into the surface area, pore structure,
Fig. 4 Compound modification processes of ATP.122,124,126 Copyright 20

© 2024 The Author(s). Published by the Royal Society of Chemistry
elemental composition, phase purity, surface functional
groups, and other properties that inuence their performance.

SEM (Scanning Electron Microscope) tests are essential for
observing the morphology of attapulgite and its composites.
These tests allow for a close examination of the rod-shaped
crystals of attapulgite as well as any new morphologies
24, Elsevier.
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introduced by othermaterials. The SEM technique also provides
valuable insights into the loading situation of activated mate-
rials, such as metals and metal oxides, within the composite, as
shown in Fig. 5a.

FTIR (Fourier Transform Infrared) tests are applied to char-
acterize the molecular structure and chemical bonds of atta-
pulgite composites. As a silico-aluminate mineral, attapulgite
exhibits infrared spectral characteristic peaks that provide
insights into its structure. The prominent peaks observed
around 3500 cm−1 primarily correspond to the –O–H stretching
vibration. Specically, the absorption peak located at 3550 cm−1

represents the stretching vibration of crystalline water within
attapulgite, while the peak at 3480 cm−1 signies the stretching
vibration of surface water and zeolite water present in atta-
pulgite. Furthermore, the peak situated around 1655 cm−1 is
primarily attributed to the H–O–H bending vibration of water
molecules. Lastly, the peak near 1250 cm−1 is primarily asso-
ciated with the bonding region between Si and Al. On this basis,
researchers should be able to observe whether there are new
peaks appearing aer combination with or loading on atta-
pulgite, as shown in Fig. 5b.

XRD (X-ray Diffraction) tests are employed to identify the
crystal structure of attapulgite composite materials. The char-
acteristic diffraction peaks of attapulgite are located at 2q =

8.35°, 13.77°, 19.82°, and 27.58°, respectively corresponding to
Fig. 5 Characterizations of attapulgite compositematerials (a) SEM graph
curve.103,114,122,128 Copyright 2024, MDPI.

16308 | RSC Adv., 2024, 14, 16300–16317
(110), (200), (040), and (102) faces of attapulgite.127 When atta-
pulgite is combined with other substances, new peak positions
and crystalline phases will appear, proving that there are indeed
new substances combining with it, as shown in Fig. 5c.

XPS tests are used to analyze the elemental and chemical
valence states as well as valence electron states on the surface of
attapulgite composite materials. The main elements of atta-
pulgite are O, Si, C, Al. Aer loading with active substances,
some metal elements such as Fe, Cu, Ti, etc. (based on the
loading substances) may be present. The valence states of these
elements can be analyzed based on the binding energy (Fig. 5d).

BET tests are to determine the specic surface area of
micropores of attapulgite and its composite materials. The
specic surface area of attapulgite clay is about 110–130 m2 g−1,
aer being combined with other substances or loaded with
active substances, its specic surface area may increase or
decrease. However, researches have shown that the catalytic
activity of attapulgite material is not directly proportional to its
size of specic surface area. Sometimes, when the specic
surface area decreases, the catalytic activity actually increases
(Fig. 5e).

In addition to above characterizations, there are other
testing methods, such as Raman spectroscopy and thermog-
ravimetry (Fig. 5f), that can be employed to characterize
attapulgite-based composite materials. It's worth noting that
s (b) FT-IR curves, (c) XRD curves, (d) XPS, (e) BET A–D curves and (f) TG

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The diagram of adsorption mechanisms by attapulgite-based
absorbents.
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these tests are not discrete, but rather, they complement one
another, offering a more comprehensive and accurate repre-
sentation of the material's properties. By integrating these
various testing methods, a more comprehensive understanding
of the nature and performance of attapulgite-based composite
materials can be achieved, ultimately aiding in their optimal
application.

5 The mechanism of attapulgite
composite materials removing
contaminants from water
5.1 Adsorption mechanisms

The possible adsorption mechanisms of the refractory organics
by attapulgite-based absorbents are based on the following
properties: (i) the micropores, mesopores, and macropores
structure of ATP or ATP-based composites, which facilitates the
free diffusion of pollutants and guarantees mass transport to
the internal structure; (ii) aer introduction of organics to
ATP,74–79 the surface functional groups, surface structure and
the hydrophobicity of ATP had been changed, fully increased
the exposed active sites (–NH3, oxygen-containing groups etc.)
and negative charges, which made it favorable for encountering
and capturing cationic molecules via hydrogen bonds and
electrostatic interaction;81 (iii) combined ATP with carbon series
materials (GO, g-C3N4)95–106 or Fe series materials (nZVI)107–109 to
enhance specic surface area and conductivity, and these
substances on ATP maybe have chemical reactions with the
adsorbates,107,109 reach the goal of refractory organics removal;
(iv) the crystalline water in the structure of attapulgite is located
on the surface of its channel, which is easy to form hydrogen
bonds with the adsorbate entering the channel;95–97 (v) some
ATP based catalysts (such as APT/C@NiFe-LDHs96) with
primarily p–p stacking could act as electron acceptors and be
conducive to adsorbing the cationic pollutants with unsatu-
rated double bond or conjugate structure, and cation–p
bonding95 can be formed between cation and p – rich electronic
structure by electrostatic attraction and polarization. All these
above examples reveal that p–p interaction, hydrophobic effect,
cation–p bonding, chemical complexation, hydrogen bond and
electrostatic attraction are mainly involved in the adsorption
process. The diagram of adsorption mechanisms by attapulgite-
based absorbents can be seen in Fig. 6.

5.2 Catalysis mechanisms

According to the different active components, the catalytic
mechanisms of attapulgite-based catalysts for refractory
organics can be divided into three types: heterogeneous Fenton
process, photocatalysis and electric catalysis.

5.2.1 ATP-based heterogeneous Fenton catalysts. In
general, iron or iron oxides (active components) were loaded on
ATP or ATP composites, and the active components can catalyze
and decompose the adsorbed hydrogen peroxide (or perox-
ysulfate) into cOH (or cSO4

−) which have strong oxidation and
can oxidize andmineralize most of the organic compounds129,130

(Fig. 7). Attapulgite-based heterogeneous catalysts can catalyze
© 2024 The Author(s). Published by the Royal Society of Chemistry
and oxide organic pollutants effectively within a wide pH range,
which is benecial for in situ remediations of polluted
groundwater and soil and can be reused for further runs.
Heterogeneous Fenton-like reaction is a surface-controlled
reaction that depends on the catalyst surface area, H2O2 (or
peroxysulfate) concentration, the reaction temperature, and
solution pH and ionic strength.41,131

5.2.2 ATP-based photocatalysts. An ideal photocatalyst is
envisioned to exhibit exceptional performance characteristics,
encompassing a suitable band edge potential, narrow band gap
energy, enhanced charge separation, improved charge trans-
portation, and minimized recombination.132,133 To achieve this,
attapulgite-based photocatalytic materials undergo modica-
tions through alterations in their chemical compositions, ach-
ieved by methods such as doping,134 composite formation,135

metal sensitization, and molecule functionalizations.136 Addi-
tionally, modications are made to their physical structures,
encompassing adjustments in size, shape, and surface
morphology.

The fundamental principle underlying attapulgite-based
photocatalysis is rooted in the theory of solid energy bands.
When the light irradiation absorbed by the semiconductor
components of catalysts (TiO2, CdS, etc.) surpasses the width of
the photon band gap, electron–hole pairs are generated as
a result of the transition of electrons. This light irradiation
prompts the excitation of electrons from the valence band (VB)
to the conduction band (CB), simultaneously creating holes in
the VB.137,138 Subsequently, these electrons and holes, stimu-
lated by the light radiation, migrate to the surface of the
semiconductor particles through various interactions. Once
there, they react with water or organic substances adsorbed on
the surface of the semiconductor catalyst particles, thereby
producing a photocatalytic effect.,139,140 as shown in Fig. 7.
RSC Adv., 2024, 14, 16300–16317 | 16309
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Fig. 7 Schematics of heterogeneous catalysis processes by ATP-based catalysts.
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5.2.3 ATP-based electrocatalyst. ATP-based electrocatalysis
process covers two steps: electrode reaction and catalysis. The
electrode can be combined with or separated from the ATP-
based catalyst. Firstly, H2O2 is formed from O2 by anodic reac-
tion at the anode; then H2O2 is decomposed into cOH under the
catalysis of iron containing ATP-based catalyst, which can
degrade refractory organic compounds into CO2.35,141 Most of
the electrocatalysis processes have the same mechanism
(Fig. 7), they just used different electrodes and catalysts.
6 Future perspectives and attractions

Attapulgite indeed offer promising applications in the treat-
ment of refractory organic wastewater due to its abundant
reserves and low prices, easy modication and good compati-
bility, environmental friendliness, unique nanostructure and
excellent performance. The attributes of attapulgite make it an
attractive candidate for the development of novel composite
materials for refractory organic wastewater treatment. With
further research and optimization, attapulgite-based compos-
ites have the potential to become cost-effective and sustainable
solutions for water pollution control.

It is necessary to further strengthen fundamental research,
promote removal efficiency and solve the key problems
restricting attapulgite applications. The researches of atta-
pulgite composite materials will be carried out in the following
aspects.

(1) Deeply explore the chemical and physical properties of
attapulgite and attapulgite-based composite materials, as well
as their reaction mechanisms in removing organic pollutants
16310 | RSC Adv., 2024, 14, 16300–16317
from the molecular level. Optimize the design and preparation
of attapulgite composite materials through experimental and
simulation methods to achieve higher removal efficiency and
stability.

(2) The integration of attapulgite with other novel advanced
materials could lead to the development of hybrid materials
(such as aerogel materials, membrane materials, etc.) with
multi-functional properties including ltration, adsorption and
catalysis.

(3) Emphasizing the use of renewable and biodegradable
modiers in the synthesis of attapulgite composites could
promote more sustainable wastewater treatment practices.
Scaling up of attapulgite composites production and integrating
them into commercial wastewater treatment systems could
signicantly contribute to environmental protection and
sustainability.
7 Conclusion

Attapulgite exhibits a certain adsorption capacity and catalysis
ability for organic pollutants in water due to its unique rod-
shaped morphology and pore structure. However, the specic
surface area and accumulation nature of natural attapulgite
limit its widespread application in increasingly complex
wastewater treatments. To overcome these limitations, atta-
pulgite can be modied with organics, carbon series materials,
and Fe series materials, signicantly enhancing its adsorption
and catalysis performance. These modied attapulgite-based
materials effectively improve wastewater treatment efficiency,
material recycling performance, and signicantly reduce
© 2024 The Author(s). Published by the Royal Society of Chemistry
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treatment costs. While surface modication maybe “sacrice”
the negative charge and pore of attapulgite composites, organic
or inorganic modication of attapulgite exhibit good adsorp-
tion and catalysis performance due to the surface functional
groups carried by the organics or inorganic materials.

At present, the main application problem of attapulgite
composite materials is that adsorption and catalysis can only
occur on the surface of them, and the internal of particle
adsorbent/catalyst cannot be fully utilized. Therefore, atta-
pulgite composite materials are usually made into powder or
nano particles, which are not easy to recycle. Future research on
attapulgite should not only focus on harnessing the unique
properties of attapulgite and the synergistic effect of surface
modication, but also focus on fully utilizing attapulgite
composite materials both surface and inside, and at the same
time they are easy to recycle. Promising attapulgite-based
materials are those with multi-functional and stable perfor-
mance that can be achieved by adjusting their morphology and
structure.
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A. E. Sáez, Modeling the oxidation of phenolic
compounds by hydrogen peroxide photolysis,
Chemosphere, 2016, 161, 349–357, DOI: 10.1016/
j.chemosphere.2016.06.110.

23 C. T. Chekem, V. Goetz, Y. Richardson, G. Plantard and
J. Blin, Modelling of adsorption/photodegradation
phenomena on AC-TiO2 composite catalysts for water
treatment detoxication, Catal. Today, 2019, 328, 183–188,
DOI: 10.1016/j.cattod.2018.12.038.

24 J. Huang, Treatment of phenol and p-cresol in aqueous
solution by adsorption using a carbonylated hyper
crosslinked polymeric adsorbent, J. Hazard. Mater., 2009,
168, 1028–1034, DOI: 10.1016/j.jhazmat.2009.02.141.
16312 | RSC Adv., 2024, 14, 16300–16317
25 E. Xenofontos, A. M. Tanase, I. Stoica and I. Vyrides, Newly
isolated alkalophilic Advenella species bioaugmented in
activated sludge for high p-cresol removal, New
Biotechnol., 2016, 33, 305–310, DOI: 10.1016/
j.nbt.2015.11.003.

26 W. M. Chen, Y. F. Luo, G. Ran and Q. B. Li, An investigation
of refractory organics in membrane bioreactor effluent
following the treatment of landll leachate by the O3/
H2O2 and MW/PS processes, Waste Manage., 2019, 97, 1–9,
DOI: 10.1016/j.wasman.2019.07.016.

27 J. B. Liu, P. Y. Zhang, Z. Y. Tian, R. Xu, Y. Wu and Y. H. Song,
Pollutant removal from landll leachate via two-stage
anoxic/oxic combined membrane bioreactor: Insight in
organic characteristics and predictive function analysis of
nitrogen-removal bacteria, Bioresour. Technol., 2020, 317,
124037, DOI: 10.1016/j.biortech.2020.124037.

28 L. P. Gu, X. Tang, Y. Sun and H. J. Kou, Bioavailability of
dissolved organic matter in biogas slurry enhanced by
catalytic ozonation combined with membrane separation,
Ecotoxicol. Environ. Saf., 2020, 196, 110547, DOI: 10.1016/
j.ecoenv.2020.110547.

29 Y. B. Liu, F. Q. Liu, N. Ding, X. M. Hu, C. S. Shen, F. Lia,
M. H. Huang, Z. W. Wang, W. Sand and C. C. Wang,
Recent advances on electroactive CNT-based membranes
for environmental applications. The perfect match of
electrochemistry and membrane separation, Chin. Chem.
Lett., 2020, 31, 2539–2548, DOI: 10.1016/j.cclet.2020.03.011.

30 C. Xue, Y. P. Mao, W. L. Wang, Z. L. Song, X. Q. Zhao, J. Sun
and Y. X. Wang, Current status of applying microwave-
associated catalysis for the degradation of organics in
aqueous phase – a review, J. Environ. Sci., 2019, 81, 119–
135, DOI: 10.1016/j.jes.2019.01.019.

31 M. Sun, Y. Zhang, S. Y. Kong, L. F. Zhai and S. B. Wang,
Excellent performance of electro-assisted catalytic wet air
oxidation of refractory organic pollutants, Water Res.,
2019, 158, 313–321, DOI: 10.1016/j.watres.2019.04.040.

32 Z. F. Luo, D. H. Wang, W. S. Zeng and J. Yang, Removal of
refractory organics from piggery bio-treatment effluent by
the catalytic ozonation process with piggery biogas
residue biochar as the catalyst, Sci. Total Environ., 2020,
734, 139448, DOI: 10.1016/j.scitotenv.2020.139448.

33 Y. Ji, Z. Pan, D. Yuan and B. Lai, Advanced treatment of the
antibiotic production wastewater by ozone/zero-valent iron
process, Clean: Soil, Air, Water, 2018, 46, 1700666, DOI:
10.1002/clen.201700666.

34 G. R. Agladze, G. S. Tsurtsumia, B. I. Jung, J. S. Kim and
G. Gorelishvili, Comparative study of chemical and
electrochemical Fenton treatment of organic pollutants in
wastewater, J. Appl. Electrochem., 2007, 37, 985–990, DOI:
10.1007/s10800-007-9325-1.

35 M. Ghasemi, A. Khataee and P. Gholami, Template-free
microspheres decorated with Cu-Fe-NLDH for catalytic
removal of gentamicin in heterogeneous electro-Fenton
process, J. Environ. Manage., 2019, 248, 109236, DOI:
10.1016/j.jenvman.2019.07.007.

36 J. Xu, Y. Long and D. Shen, Optimization of Fenton
treatment process for degradation of refractory organics
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1016/j.chemosphere.2016.05.066
https://doi.org/10.1016/j.chemosphere.2016.05.066
https://doi.org/10.1016/j.matchemphys.2018.10.045
https://doi.org/10.1016/j.matchemphys.2018.10.045
https://doi.org/10.1016/j.jhazmat.2022.129023
https://doi.org/10.1016/j.seppur.2021.119325
https://doi.org/10.1016/j.chemosphere.2022.136018
https://doi.org/10.1016/j.chemosphere.2022.136018
https://doi.org/10.1016/j.jece.2021.106988
https://doi.org/10.1016/j.jwpe.2021.102485
https://doi.org/10.1016/j.envres.2020.109249
https://doi.org/10.1016/j.chemosphere.2016.06.110
https://doi.org/10.1016/j.chemosphere.2016.06.110
https://doi.org/10.1016/j.cattod.2018.12.038
https://doi.org/10.1016/j.jhazmat.2009.02.141
https://doi.org/10.1016/j.nbt.2015.11.003
https://doi.org/10.1016/j.nbt.2015.11.003
https://doi.org/10.1016/j.wasman.2019.07.016
https://doi.org/10.1016/j.biortech.2020.124037
https://doi.org/10.1016/j.ecoenv.2020.110547
https://doi.org/10.1016/j.ecoenv.2020.110547
https://doi.org/10.1016/j.cclet.2020.03.011
https://doi.org/10.1016/j.jes.2019.01.019
https://doi.org/10.1016/j.watres.2019.04.040
https://doi.org/10.1016/j.scitotenv.2020.139448
https://doi.org/10.1002/clen.201700666
https://doi.org/10.1007/s10800-007-9325-1
https://doi.org/10.1016/j.jenvman.2019.07.007
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra02014f


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

2.
07

.2
02

4 
10

:3
4:

41
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
in pre-coagulated leachate membrane concentrates, J.
Hazard. Mater., 2017, 323, 674–680, DOI: 10.1016/
j.jhazmat.2016.10.031.
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