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Predicting the phytotoxic mechanism of action of
LiCoO2 nanomaterials using a novel multiplexed
algal cytological imaging (MACI) assay and
machine learning†
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Currently, there is a lack of knowledge of how complex metal oxide nanomaterials, like LiCoO2 (LCO)

nanosheets, interact with eukaryotic green algae. Previously, LCO was reported to cause a number of

physiological impacts to Raphidocelis subcapitata including endpoints related to growth, reproduction,

pigment & lipid biosynthesis, and carbon biomass assimilation. Furthermore, LCO was proven to physically

enter the cells, thus indicating the possibility for it to directly interact with key subcellular components.

However, the mechanisms through which LCO interacts with these key subcellular components is still

unknown. This study assesses the interactions of LCO at the biointerface of R. subcapitata using a novel

multiplexed algal cytological imaging (MACI) assay and machine learning in order to predict its phytotoxic

mechanism of action (MoA). Algal cells were exposed to varying concentrations of LCO, and their

phenotypic profiles were compared to that of cells treated with reference chemicals which had already

established MoAs. Hierarchical clustering and machine learning analyses indicated photosynthetic electron

transport to be the most probable phytotoxic MoA of LCO. Additionally, single-cell chlorophyll

fluorescence results demonstrated an increase in irreversibly oxidized photosystem II proteins. Lastly, LCO-

treated cells were observed to have less nuclei/cell and less DNA content/nucleus when compared to

non-treated cell controls.

Introduction

As the number of engineered nanomaterials found in the
environment and commerce expands, understanding the
breadth of their environmental consequences is a challenge
we currently face. In particular, a class of nanomaterials we

need more toxicological data on are complex metal oxide
nanomaterials, like LiCoO2 (LCO) nanosheets due to their
high volume of production and presence in commerce.1 LCO
is one of the most commonly used cathode materials in
rechargeable Li-ion batteries2 and can be found in a
multitude of consumer electronics from computers and
smart phones to high-end electric vehicles. As such, the
annual production rate for LCO has skyrocketed to levels of
environmental significance in recent years.1 What makes this
matter particularly concerning, however, is that there is little
to no infrastructure for recycling or for properly disposing of
LIB's, nor is there any economic incentive to do so as it is
cheaper to simply manufacture new battery materials.1 For
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Environmental significance

Complex metal oxide nanomaterials, like LiCoO2, are among some of the most widely produced nanomaterials in commerce, yet there is still little
information on how they may interact with algae and other plant-type organisms. Furthermore, in general, there is a need for more non-targeted, high-
throughput profiling assays that can quickly and effectively characterize nanomaterial mechanisms of action in environmentally relevant organisms, like
algae. This study applies a novel phenotypic profiling approach for predicting the mechanisms through which nanomaterials, like LiCoO2, interact at the
biointerface of plant-type organisms in a way that is quick, efficient, and cost-effective. Using this approach, it was found that the most probable
mechanism of action of LiCoO2 in algae is that of photosynthetic electron transport inhibition.
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example, it is currently estimated that less than 5% of all
LIB's are being recycled, with the rest ending up in landfills
or being disposed of in other mean of un-sustainable
storage.3 As a result, this means that there is a high
probability for LCO to be unintendedly released into the
environment, thus posing an ecological risk. And what
exacerbates this risk is that LCO contains high-valence metals
with unique catalytic properties, high reactivity, and known
inherent toxicity.4,5 Thus, understanding the impacts of LCO
to a wide diversity of environmentally relevant organisms
across multiple trophic levels is of paramount importance.
Current research has been done to assess LCO's toxicological
impacts and mechanism of action (MoA) in higher animal-
type organisms. For example, Curtis et al., 20226 has
reported LCO to cause a differential expression in electron
transport and energy metabolism related genes across
different fish and invertebrate species. Furthermore,
Niemuth et al., 20207 has reported LCO to participate in
redox reactions and alter the redox state of and Fe–S
proteins, which are important for electron transport.
However, our understanding of LCO's impacts to plant-type
organisms is still limited.

In a previous study, LCO was reported to cause a number
of physiological impacts to Raphidocelis subcapitata, such as
reduced growth, altered pigment biosynthesis, and impaired
photosynthetic productivity.8 Furthermore, LCO nanoparticles
were proven to physically enter the algal cells, thus implying
that they undergo direct interactions with key subcellular
compartments.8 However, our understanding of the
mechanisms governing these consequences is still unclear.
Given that photosynthesis was impacted in algae and its
reverse reaction, respiration, has also been reportedly
impacted in higher animal species,6 it's likely that they may
experience similar mechanistic disturbances. For example,
key photosynthetic proteins like photosystem II (PSII), which
facilitate electron flow in chloroplasts, could be impacted.

In order to assess the interactions of LCO at the biointerface
of algal cells, a multiplexed algal cytological imaging (MACI)
assay in combination with data mining and machine learning
techniques can be used. MACI, as described in a previous study
by Ostovich & Klaper, 2023,9 is a type of high-throughput
phenotypic profiling assay which involves the use of
fluorescence cytochemistry to visualize multiple subcellular
structures within the cell, and automated high-content
fluorescence imaging to take hundreds of snapshots of their
morphology in a consistent manner. In general, high-content
phenotypic profiling works off the principal that the
morphology of a cell is very sensitive to environmental cues10

and that subtle, yet reproducible, alterations to subsets of
morphological features can be used as a framework to
characterize compound-specific interactions and predict MoAs
of novel compounds when comparing their phenotypic profiles
to that of compounds with established MoAs.11 Additionally,
image-based profiling assays provide the advantage of speed
and cost effectiveness when compared to transcriptomic- and
proteomic-based profiling assays.12,13 However, MACI, in the

context of eco- and phytotoxicological research, provides an
additional benefit compared to other mainstream high-
throughput phenotypic profiling assays, like Cell Painting,14 in
that it relies on the fluorescent labeling of subcellular structures
that are unique to the architecture of algal cells, as opposed to
human/animal cells. This is beneficial in terms of
phytotoxicological research as it would allow researchers to
accurately characterize the MoAs that are unique to plant-type
organisms, especially MoAs that target the chloroplast (not
present in animal cells). Additionally, MACI could be
particularly useful in terms of environmental relevance as plant-
type organisms, like microalgae, on average, constitute the
largest amount of biomass in the environment and drive
environmental processes that affect ecosystem dynamics.15,16

Therefore data obtained from MACI could potentially be used to
make predictions that are tied to larger ecosystem level
consequences.

In this study, algal cells were exposed to LCO for 24 hours,
and MACI was used to characterize subcellular changes in their
phenotype with the goal of understanding LCO-algal
interactions. R. subcapitata, was chosen as the model organism
in this study as this particular algal species is a US EPA
established model for environmental toxicology,17 as well as an
important bioindicator species for monitoring water quality.18

In addition, it maintains its unicellular nature under stress,
which is ideal for downstream segmentation in bioimage
analyses. In comparison, other common types of microalgae,
like Chlamydomonas spp. or Scenedesmus spp., could potentially
form colonies or coenobia in response to environmental
stressors,19,20 which would make it harder to distinguish
individual cells from one another. Lastly, R. subcapitata was also
chosen in order to make direct connections to previous algal-
based LCO studies in the literature, which also used this algal
species as a toxicological model organism.8 The phenotypic
profiles of LCO-treated cells were compared to several reference
compounds with established MoAs to predict the phytotoxic
MoA of LCO. These reference compounds were chosen to
represent MoAs that have been reported for other nanomaterials
like membrane disruption,21 DNA damage,22 and more. The
similarities between LCO and reference compound profiles were
evaluated using hierarchical clustering based on Euclidean
distance. An additional deep learning convolutional neural
network (CNN) approach was also used to characterize the MoA
experienced in individual cells as a means to predict LCO's
phytotoxic MoA.

Materials and methods
LCO synthesis and characterization

LixCoO2 nanosheets were synthesized using techniques
described in previous studies.8,23,24 18.2 MΩ cm−1 water was
used for each step during the synthesis. A (Co(OH)2) precursor
was prepared using a precipitation reaction between LiOH and
Co(NO3)2·6H2O. 1 M Co(NO3)2·6H2O was added to a 0.1 M
solution of LiOH, drop-by-drop. The precipitate was isolated
and washed with 3 cycles of centrifugation for 5 min at 4696 g
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in order to isolate a pellet of particles, and then resuspended in
water. Next, the supernatant was removed after washing and the
solid product was dried in a vacuum oven at 30 °C overnight.
The Co(OH)2 precursor was then lithiated to form LixCoO2 by
adding 0.20 g Co(OH)2 particles to a molten salt flux of 6 : 4
molar ratio of LiNO3 : LiOH at 200 °C in a PTFE container
equipped with magnetic stirring in a silicone oil bath. The
particles were heated and stirred in this molten salt flux for 30
min and the reaction was quenched with water. The precipitate
was isolated and washed by 3 cycles of centrifugation for 5 min
at 4696 g to isolate a pellet of particles, and were then
resuspended in water. Then the product was isolated from the
supernatant and dried in a vacuum oven at 30 °C overnight.
The particles, which were digested in aqua regia, were analyzed
using inductively coupled plasma – optical emission
spectroscopy (ICP-OES) to yield a Li : Co ratio of 0.92 : 1. Surface
area measurements, determined by nitrogen physisorption,
yielded a surface area value of 125 m2 g−1. Individual LCO
particles were imaged and sized using a FEI Tecnai T12
transition electron microscope (TEM). Only particles completely
captured in each TEM micrograph were measured. Thickness
was measured on particles that appeared very dark as this
means they were viewed edge-on. Length of particles were
measured if clearly defined endpoints were visible and if it
could reasonably be assumed that it was a single particle as
opposed to an aggregate. Dynamic light scattering (DLS) and
zeta potential measurements of LCO suspensions in OECD 201
media were obtained with a Zetasizer Nano ZS Size Analyzer
from Malvern PANalytical.

Algal cell culture

A stock culture of R. subcapitata, inoculated at 1 × 105 cells
per mL, was grown in a 1 L Erlenmeyer flask and cultured in
OECD 201 media.25 Cells were illuminated continuously in
an incubator with a full spectrum T8 light bulb at a photon
flux of 70 μE m−2 s−1. The stock culture was mixed with an
orbital shaker at a speed of 111 rpm.

Exposure setup

This exposure was done to assess predict the phytotoxic MoA
of LCO on R. subcapitata by comparing changes in the
complex phenotype of LCO-treated cells to that of reference
chemicals with established MoAs after 24 hours of exposure.
Each reference chemical and their associated MoA are
reported in Table 1, below.

An additional LCO exposure was done at 48 hours to
better evaluate physiological endpoints such as nucleation
state. Algae were exposed to one of four LCO concentrations
or untreated control (0 μg mL−1, 0.01 μg mL−1, 0.1 μg mL−1, 1
μg mL−1, & 10 μg mL−1 LCO), an ion control that contained
the concentration of lithium and cobalt ions that would be
present in the algae media containing 10 μg mL−1 of LCO
after 24 or 48 hours, depending on the exposure duration. In
each treatment, 900 μL aliquots of algal stock culture were
seeded into individual 1.5 mL microcentrifuge tubes after

cells were growing exponentially. A stock suspension of LCO
was constituted at 100 μg mL−1 in OECD 201 media. For this
study, the OECD 201 media was made to be deficient in
EDTA in order to prevent the mitigation of any metal-induced
stress. This suspension was sonicated for 25 minutes before
the addition to respective samples to break up any
aggregated nanoparticles. Additionally, an ion solution made
from LiOH and CoCl2·H2O, also constituted the OECD 201
media, was made at 10× the concentration of ion dissolution
of 10 μg mL−1 of LCO after 24 and 48 hours, depending on
the exposure duration. For each treatment, OECD 201 media,
LCO suspension, or 10× ion solution was added to each 900
μL cell suspension at a final volume of 1 mL. The samples
were then placed under full spectrum illumination, with tube
lids open, at a photon flux of 70 μE m−2 s−1 for 24 hours. The
24 hour exposure duration was chosen for MoA prediction as
this timepoint has been shown to better delineate initial
phenotypic impacts,34 while the 48 hour exposure duration
was chosen to examine physiological endpoints.

Single-cell chlorophyll fluorescence

At the conclusion of these exposures, a 50 μL aliquot from each
sample was plated in to a well of a glass bottom 384 well plate
(Cellvis, P384W-1.5H-N) and spun gently at 600 RPM for 1
minute to concentrate cells at the bottom of the well. Cells were
not stained nor fixed with glutaraldehyde for this assay as to
prevent interference with raw fluorescence. Cells were then dark
adapted for 30 min to ensure PSII centers were in an open, or
oxidized, state before imaging with an ImageXpress Micro XLS
High-Content Screening System. For image acquisition, cells
were visualized using a Cy5 filter (ex/em: 628/692) in a manner
similar to that of a PAM Fluorometer, such that cells are exposed
to a low intensity light beam followed by a saturating light beam
to measure the minimal (F0) and maximal (Fm) chlorophyll
fluorescence, respectively (Fig. 1) using the fluorescence
cytochemistry parameters in Table 2. After acquiring images,
bioimage analysis was used to measure the respective
fluorescence intensities. Using the “mean_integrated_intensity”
values for F0 and Fm, the variable fluorescence (Fv) and quantum
efficiency of PSII (Fv/Fm) of individual cells were calculated using
the following equation:

Table 1 Reference chemicals with known MoAs

Chemical Mechanism of action Abbreviation Ref.

Aclonifen Carotenoid biosynthesis
inhibition

CBI 26

Carfentrazone Membrane disruption MD 27
DCMU PSII photochemistry inhibition PPI 28
Glufosinate N2 metabolism inhibition NMI 29
H2O2 Oxidative stress OS 30
Metolachlor Very-long-chain fatty acid

synthesis inhibition
VLCFASI 31

MSMA OP uncoupler/e− transport
inhibition

OPU/e− TI 32

Zeocin DNA damage DD 33

Environmental Science: Nano Paper
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Fv

Fm
¼ Fm − F0

Fm
(1)

Multiplexed algal cytological imaging (MACI) assay

The MACI assay was carried out as using methods described by
Ostovich & Klaper, 2023.9 At the end of the exposure, 905 μL
aliquots from each sample were transferred to sterile 1.5 mL
microcentrifuge tubes. Commercially available fluorescent
probes were used to stain nuclei and lipid droplets using
NucBlue (Thermo Fisher, R37605) and BODIPY 505/515
(Thermo Fisher, D3921), respectively, and glutaraldehyde was
used to fix the algal cells. After adding reagents, all reactions
were incubated overnight, at 4 °C to minimize enzymatic
degradation and maintain the integrity of the subcellular
structures. After incubating reactions, cells were centrifuged at
4000×g for 5 min, washed 2× with 1× phosphate buffered saline
(PBS), and resuspended in PBS. Cells from each sample were
loaded into a well of a glass bottom 384 well plate (Cellvis,
P384W-1.5H-N) at a seeding density of ∼2 × 103 cells per mm2

for optimal distribution of cells across the well surface. After
loading cells, the well plate was then spun gently at 600 RPM
for 1 minute to concentrate cells at the bottom of the well.
Images were acquired at 9 sites per well with an ImageXpress
Micro XLS High-Content Screening System with a 60× Plan
Fluor 0.85 NA air immersion objective (Molecular Devices,
1-6300-0414), using the Cy5, GFP, and DAPI fluorescent
channels to visualize the chloroplast, lipid droplets, and nuclei,
respectively. To enhance image contrast and resolution, the
digital confocal feature was used during image acquisition. For
representative cell images with higher resolution, some images

were also acquired with a 100× CFI L PLAN EPI CC 0.85 NA air
immersion objective (Molecular Devices, 1-6300-0419).

Bioimage analysis

After acquiring images CellProfiler,35 was used for image pre-
processing, object segmentation, and morphological feature
extraction at the resolution of individual cells. Morphological
features related to area, shape, intensity, and granularity of
each subcellular structure were extracted, in addition to
cytoplasmic intensity features to add more measurements for
comparing the phenotypic profiles of LCO and reference
chemical treatments, which were run on separate plates.
These data were exported to a local SQLite database file and
were then extracted using the RSQLite package in R.36

Phenotypic profiling – fingerprint analysis

Phenotypic response data was analyzed using the methods
described by Ostovich & Klaper, 2023.9 The data was firstly
processed by aggregating single-cell morphological feature
measurements to per-image and then per-well values, which
was done by taking the cell and image means, respectively.
Secondly, well data from each compound and dose were then
normalized to the non-treated cell control by computing a
Z-score. In order to verify whether LCO elicited a change to
the entire phenotypic profile of treated cells, a partial least
squares-discriminant analysis (PLS-DA) was performed in R
using the mixOmics package.37 Before feeding phenotypic
response data into the PLS-DA models, an ANOVA was
performed across all features for each reference chemical to
remove any non-informative features with little variance
(p-values > 0.05). Lastly, factor analysis was used to further
reduce the dimensionality of phenotypic data vectors, and
the fingerprints were subsequently compared to one another
using hierarchical clustering based on Euclidean distance
in R.

Phenotypic profiling – convolutional neural networks

In addition to fingerprint analysis, a CNN was also trained
on a small subset of reference compound treated cells
(∼9.3%) using the classifier module on CellProfiler Analyst
(Ver 3.0).38 A separate bin was created for each reference
chemical and the non-treated cell control in the classifier
module, where around 1000 randomly fetched cells from
each treatment were placed in each respective bin. For the
non-treated cell control, cells form the reference chemical
exposure and LCO exposure were both used to account for
plate-to-plate and run-to-run variations. After training the
CNN, it was used to score the entire experiment by classifying

Fig. 1 Representative fluorescence micrograph of single cells at an F0
and Fm state, respectively.

Table 2 Single-cell chlorophyll fluorescence cytochemistry parameters

Intensity Channel Excitation (nm) Emission (nm) Exposure time (nm)

Minimal (F0) Cy5 628/40 692/40 35 ms
Maximal (Fm) Cy5 628/40 692/40 270 ms

Environmental Science: NanoPaper
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individual cells into predicted mechanistic classes, and
computing enrichment scores for each sample as the logit
area under the receiver operating characteristic curve. An
ANOVA and a Tukey post hoc test was used to evaluate the
significance of predicted mechanistic class enrichments for
each treatment.

Statistical analysis

All statistical analyses were performed using R Studio.39,40 A
Shapiro–Wilk test was used to verify normal distribution and
a One-Way ANOVA was used to compare variance among
group means, while a Tukey post hoc test was used for
multiple comparisons. In each analysis, significant
differences were determined with a 95% confidence interval.

Results and discussion
LCO characterization

The sizing of single LCO particles, using TEM micrographs
(found in ESI†) suggested an average thickness and length of
5.54 ± 2.01 nm and 39.63 ± 17.35 nm, respectively. The zeta
potential values for LCO suspended in OECD 201 media
(found in ESI†) indicate that this nanomaterial is negatively
charged between −17 and −20 mV in higher concentrations,
and around −8 mV in the lowest concentration (0.01 μg
mL−1). However, at all concentrations, the lower magnitude
of the zeta potential (<|30| mV) suggests that LCO is not
highly stable in suspension with OECD 201 media.
Furthermore, the hydrodynamic diameter of LCO also
generally increases with increasing concentration, thus also
suggesting increasing aggregation of LCO nanoparticles with
increasing concentration. These results generally coincide
with LCO's behavior in other aqueous media, like moderately
hard reconstituted water41 and Bold's modified freshwater
solution,8 as well.

LCO significantly alters algal cell morphology after 24 hours

After exposing R. subcapitata with LCO for 24 hours, the cells
were stained and imaged using the MACI protocol (Fig. 2a). In
the representative fluorescence micrograph, the LCO-treated
cells appear to be larger compared to the control cell, and also
appear to have distinct levels of chlorophyll, TAG, and DNA
content, which visually support the claim that LCO has an
impact on cell morphology. A CellProfiler pipeline was used to
convert the high-content image data into quantitative data
where 570 unique, unbiased, morphological features of
individual cells were used to generate phenotypic fingerprints
of molecular interaction. In order to quantitatively verify if LCO
treatment significantly alters algal cell morphology, a PLS-DA
was used to analyze subtle changes in the complex phenotypic
profile of LCO-treated cells with increasing concentration. Based
on the PLS-DA response plot (Fig. 2b), LCO-treated cells display
a significant separation between response groups, thereby
indicating that LCO does elicit a significant, and measurable,
change to cell morphology after 24 hours. Based on X-variate
data, a significant separation from the control group can be
seen at starting at the 0.1 μg mL−1 response group. Here, the
ion control response group also exhibited a significant
separation from the control group. However, the ion control
response group, which represents the amount of Li+ and Co2+

ions released from 10 μg mL−1 of LCO after 24 hours, was also
significantly different form the 10 μg mL−1 response group.
Interestingly, this data suggests that while the ions do have
somewhat of an impact on cell morphology, they are separate
from nano-specific impacts.

Phenotypic profiles of LCO-treated cells compared to
reference chemical-treated cells

In order to predict the phytotoxic MoA of LCO, the phenotypic
profiles of LCO-treated cells were compared to reference

Fig. 2 Phenotypic responses of algal cells when exposed to LCO. (a) Representative fluorescence micrograph of MACI labeling patterns in treated
and non-treated algal cells. (b) A PLS-DA response plot graphically describes the change across complex morphological feature data with
increasing concentration of LCO; ellipses represent 95% confidence intervals and p-values represent ANOVA statistics across the 1st latent variable
between response groups.
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chemical-treated cells with known MoAs. For this purpose, the
10 μM reference chemical data was compared to the 1 μg mL−1

LCO data, which is around 10 μM of LCO, to compare responses
of similar concentrations.

After constructing the phenotypic fingerprints, an ANOVA
was used to identify individual features that carry little
information, which were removed from the analysis given a
p-value > 0.05. Additionally, factor analysis was used to
further reduce the dimensionality of the phenotypic data
vectors down to 7 eigen features/factors in order to minimize
redundant measurements while preserving variance. The
phenotypic fingerprints across all replicates for each
reference chemical and LCO treatment were hierarchically
clustered based on Euclidean distance (Fig. 3). Euclidean
distance is a data mining technique that measures how far
apart two points are in a high-dimensional feature space,42

and can be calculated as the square root of the sum of
squares between two vectors.43

The hierarchical clustering analysis was able to identify
four main clusters. LCO-treated samples were clustered with
DMCU and three of the MSMA-treated samples, thus
indicating that their phenotypic profiles are most similar to
one another. The MoAs of DMCU and MSMA are both related
to electron transport inhibition in the chloroplast and
mitochondrion, respectively.28,32 Based on the results of the
hierarchical clustering analysis, we can deduce that the
probable MoA of LCO is also likely related to electron
transport inhibition. This would makes sense as LCO tends
to target proteins and pathways that are involved in transport
of electrons.7,6

Predicting the MoA of individual LCO-treated cells using
convolutional neural networks

In addition to the hierarchical clustering analysis, a
convolutional neural network was also used to classify
individual LCO-treated cells into mechanistic classes. In
CellProfiler Analyst, a CNN was trained on a small subset of
randomly fetched cells from each treatment (∼9.3% of cells
from the combined LCO and reference chemical exposures)
using 50 × 50 neurons per layer. For the healthy cell class,
the CNN was trained on cells form the non-treated cell
controls of both the LCO and reference chemical exposures
as a means to account for variations due to separate plates
and separate runs. Based on the confusion matrix (Fig. 4),
the CNN model was able to predict the correct mechanistic
class across training cells with a moderately good
classification accuracy of 73.82%. Once trained, the CNN
model was used to score each cell in the LCO exposure, based
on its individual phenotype, with a predicted mechanistic
class, and then calculate enrichment scores for each sample.

The average enrichment scores for the LCO exposure are
visualized in a heatmap (Fig. 5) where values with asterisks
(*) represent the mechanistic classes which are significantly
enriched in each treatment when compared to the control.
Based on these results, the CNN model predicted PSII
photochemistry inhibition, or photosynthetic electron
transport, as the most probable MoA of LCO with the highest
and most significantly enriched scores. This was most
notable in the 1 μg mL−1 and ion control treatments. These
treatments also obtained high enrichment scores in the
oxidative phosphorylation uncoupler/mitochondrial electron

Fig. 3 Dendrogram of hierarchically clustered LCO treated samples
compared to reference chemical threated samples. Branches represent
relative Euclidean distances between samples and nearest neighboring
samples indicate the most similar phenotypic profiles to one-another.

Fig. 4 Convolutional neural network construction. A small subset of
randomly fetched cells in each treatment from the reference chemical
and LCO exposures were fed into a convolutional neural network
model. Based on the training data, this CNN model yields a
classification accuracy of 73.82% at correctly classifying cells by their
true mechanistic class.
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transport inhibition mechanistic class; however, the scores
were not significantly different from the control due to larger
deviations in the enrichment data. This data coincides with
the hierarchical clustering data (Fig. 3) in that electron
transport inhibition in general appears to be the most
probable phytotoxic MoA of LCO, but the CNN data suggests
that this disturbance is more prevalent in the photosynthetic
pathway.

Part of the advantage of using a CNN classifier model for
phenotypic profiling is the fact that it can identify rare
objects,38 or smaller subpopulations of cells, in an otherwise
heterogeneous cell population, that have distinct mechanistic
classes that may go undetected with other phenotypic
profiling methods that average across all cells. Interestingly,
based off the enrichment data, there were also three other
significantly enriched mechanistic classes found in much
smaller subpopulations of cells. In the 1 μg mL−1 treatment,
the DNA damage and oxidative stress mechanistic classes
were also significantly enriched. Additionally, in the 10 μg
mL−1 treatment, the oxidative stress and membrane
disruption mechanistic classes were significantly enriched.
These results may make sense as these mechanistic classes
were only enriched in the highest concentrations of LCO,
which are inherently more likely to have more cells
undergoing a cytotoxic shock in which disturbances such as
DNA damage, membrane disruption, and high levels of
oxidative stress are experienced. However, it is important to
reiterate here that the main MoA experienced by these cells is
still largely photosynthetic electron transport inhibition as
the other mechanistic classed were only indicated in a small
percentage of cells.

Chlorophyll fluorescence markers indicate that LCO alters
the oxidation state of PSII proteins

Chlorophyll fluorescence is a non-invasive way to determine
relative amounts of chlorophyll content in plant-type organisms
and to assess the overall efficiency of photochemistry.44,45

Several methods currently exist to make these sorts of
measurements; pulse amplitude modulation (PAM)
fluorometers, for example, are typically used to make these
measurements in leaf tissue and algal cells. PAM's work by, first,
exposing the sample to a pulse of low intensity light to get the
minimal fluorescence, as most of the energy will enter
photochemistry and only a small portion will be re-emitted as
fluorescence signal. This is then followed by a pulse of
saturating light to get the maximal fluorescence, which at this
point, the PSII reaction centers will already be reduced and thus
most of the excited energy will be re-emitted as fluorescence
signal. In general, the minimal fluorescence is comparable to
the levels of chlorophyll present in leaf and algal samples.44

Furthermore, by taking the ratio of minimal and maximal
fluorescence, the quantum efficiency of PSII can be calculated,46

which is a good indicator of photochemistry efficiency.47 Here,
this same concept was applied using high-content fluorescence
microscopy for algal cells, and with this tool, the relative
chlorophyll levels and quantum efficiencies of PSII evaluated
for individual cells.

Fig. 6a displays measurements of single-cell chlorophyll
fluorescence after being exposed to LCO for 48 hours; each red
dot represents an individual cell. LCO treated cells had
exhibited significant increases in chlorophyll content compared
to that of the control (Fig. 6b). A quantum efficiency of PSII
around 0.7 is considered healthy and/or normal for eukaryotic
algal cells,48,49 so based on the data in Fig. 6c, even LCO treated
cells are still within a normal range. Interesting, however, LCO
treated cells exhibited a significant decrease in the quantum
efficiency of PSII, compared to the control, in somewhat of a
dose-dependent manner. In the context of the PSII
biochemistry, this data would suggest that, in LCO treated cells,
there is a higher fraction of damaged, or inactive, PSII reaction
centers.50 This type of disturbance is typically due to the
irreversible oxidation of the D1 and D2 proteins in the PSII
complex, usually following the production of O2˙

− and OH˙

radicals.51 These results, coincide with the hierarchical
clustering (Fig. 3) and CNN (Fig. 5) analyses which predicted
photosynthetic electron transport inhibition as the main
phytotoxic MoA of LCO. Additionally, these results could help
explain the reductions in the net production of carbon biomass
reported in previous studies.8

LCO significantly impacts the nucleation state and DNA
content after 48 hours

In eukaryotic cells, the nucleus in an important subcellular
compartment which houses the genetic material of the
organism and is responsible for regulating gene expression and
facilitating cellular division. Most green algae contain a unique

Fig. 5 Phenotypic enrichment score heatmap. The CNN model
classifies each cell across the entire LCO exposure with a predicted
mechanistic class based on its phenotype. Enrichment scores for each
mechanistic class are calculated in each sample. Heatmap values
represent average treatment enrichment scores; values with asterisks
(*) represent significantly enriched mechanistic classes compared to
the control.
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multiple fission reproductive pattern in which one mother cell
can divide into several daughter cells, depending on the
environmental cues.19 R. subcapitata, in particular, has the
ability to divide into eight daughter cells,18 and measuring the
number of nuclei per cell, as well as the relative amount of DNA
content per nucleus, can be used to describe instances of cell
cycle disruption/arrest.31,19,52 After exposing cells to LCO for 48
hours, cells were stained with NucBlue, in order to fluorescently
label the DNA content within the algae. A CellProfiler pipeline
was used the count the number of nuclei/cell, as well as
measure the integrated intensity of each nuclei, which was
taken as relative DNA content. On average, LCO-treated sample
contained a higher percentage of cells with only one nucleus

when compared to the non-treated samples (Fig. 7a). This affect
increased in a dose-dependent manner, with significant
differences from the control observed at 10 μg mL−1 LCO and
the ion control. The opposite trend was observed for cells with
more than one nucleus (i.e. 2 & 4 nuclei), which also changed in
a dose-dependent manner, with significant differences from the
control observed at 10 μg mL−1 LCO and the ion control.
Looking only at the cells with one nucleus, LCO-treated cells
had, on average, a lesser relative amount of DNA content when
compared to the non-treated control cell (Fig. 7b). This was also
observed in a dose-dependent manner, but with significant
differences from the control at 0.1 μg mL−1 LCO, 10 μg mL−1

LCO, and the ion control. Interestingly, when assessing the

Fig. 6 LCO significantly alters markers of chlorophyll fluorescence. (a) Representative montage micrograph of algal cells across all treatments at a
state of minimal and maximal fluorescence after 48 hours of exposure to LCO; (b) relative chlorophyll content after 48 hours of exposure to LCO;
(c) quantum efficiency of PSII. Diamonds on boxplots represent treatment means and significant differences were determined using a one-way
ANOVA with a Tukey post hoc test for multiple comparisons; columns with different letters differ significantly (p < 0.05).

Fig. 7 Nucleation state and relative DNA content in LCO-treated cells. (a) Percentage of cells with 1, 2, or 4 nuclei after 48 hours of exposure to
LCO; (b) relative DNA content of single nucleated cells; (c) Pearson correlation between the percentage of single nucleated cells and their relative
DNA content. Significant differences were determined using a one-way ANOVA with a Tukey post hoc for multiple comparisons; columns with
different letters differ significantly (p < 0.05). Error bars represent SEM.
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Pearson correlation between the two trends, a strong negative
correlation was observed (Fig. 7c). Together, these results
indicate that, on average, LCO-treated cells exhibit an increased
instance in the delay/arrest of cell cycle progression, specifically
in the earlier stages of the cell cycle (stage 1/2) before first
nuclear division.52 Based on these results, it may explain the
instances of increased growth inhibition and biovolume of
LCO-treated algal cells reported in previous studies.8 In this
case, it may be possible that LCO had an impact on nuclear/
cellular division through the impairment of photosynthetic
electron transport.53 These results are similar to that of DCMU
treated cells, which, on average, had been reported to have
significantly less nuclei/cell when compared to non-treated
control cells, and had appeared to have inhibited nuclear
division.9 This would also be consistent with other
photosynthetic organisms, like Euglena gracilis, in which similar
impacts have been reported under impaired photosynthetic
electron transport.53

Conclusion

In this study, MACI and machine learning techniques were used
to assess the interactions of LCO at the biointerface of R.
subcapitata cells and to predict the phytotoxic MoA of LCO. Algal
cells were exposed to varying concentrations of LCO, and their
phenotypic profiles were compared to that of cells treated with
reference chemicals with established MoAs. The described
analyses predicted photosynthetic electron transport to be the
most probable phytotoxic MoA of LCO, and single-cell
chlorophyll fluorescence demonstrated an increase in
irreversibly oxidized photosystem II proteins, thus fortifying the
MACI assay prediction and coinciding with the impaired carbon
biomass assimilation reported in previous work. Lastly, LCO-
treated cells were observed to have less nuclei/cell and less DNA
content/nucleus when compared to non-treated cell controls,
which suggests an interference with cell cycle progression, also
complementing the growth inhibition and biovolume data
reported in previous work.
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