Phenalenyl growth reactions and implications for prenucleation chemistry of aromatics in flames†
Abstract
The energetics and kinetics of phenalene and phenalenyl growth reactions were studied theoretically. Rate constants of phenalene and phenalenyl H-abstraction and C2H2 addition to the formed radicals were evaluated through quantum-chemical and rate-theory calculations. The obtained values, assigned to all π radicals, were tested in deterministic and kinetic Monte Carlo simulations of aromatics growth under conditions of laminar premixed flames. Kekulé and non-Kekulé structures of the polycyclic aromatic hydrocarbons (PAHs) evolving in the stochastic simulations were identified by on-the-fly constrained optimization. The numerical results demonstrated an increased PAH growth and qualitatively reproduced experimental observations of Homann and co-workers of non-decaying PAH concentrations with nearly equal abundances of even and odd carbon-atom PAHs. The analysis revealed that the PAH growth proceeds via alternating and sterically diverse acetylene and methyl HACA additions. The rapid and diverse spreading in the PAH population supports a nucleation model as PAH dimerization, assisted by the non-equilibrium phenomena, forming planar aromatics first and then transitioning to the PAH–PAH stacking with size.
- This article is part of the themed collection: PCCP 25th Anniversary Issue