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stry: machine learning for reaction
deployment, reaction development, and reaction
discovery

Zhengkai Tu,†a Thijs Stuyver†b and Connor W. Coley *ab

The field of predictive chemistry relates to the development of models able to describe how molecules

interact and react. It encompasses the long-standing task of computer-aided retrosynthesis, but is far

more reaching and ambitious in its goals. In this review, we summarize several areas where predictive

chemistry models hold the potential to accelerate the deployment, development, and discovery of

organic reactions and advance synthetic chemistry.
Introduction

Advances in the high-throughput generation and availability of
chemical reaction data have spurred a rapidly growing interest
in the intersection of machine learning and chemical
synthesis.1–4 Deep learning approaches have achieved unprece-
dented accuracy and performance in a wide variety of predictive
tasks; their potential to accelerate scientic discovery is there-
fore of immense interest.5–7 Here, we discuss recent advances in
the application of machine learning to synthetic chemistry,
divided in three categories (Fig. 1):
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is work.
(1) Reaction deployment—learning from reaction corpora to
identify trends and predict when known reactions apply to
novel substrates or combinations thereof.

(2) Reaction development—accelerating the improvement or
optimization of an existing chemical process, oen in an iter-
ative setting incorporating experimental feedback.

(3) Reaction discovery—creating new knowledge through the
elucidation of reaction mechanisms or the discovery of
unprecedented synthetic methods.

Progress in these areas has beneted from a “virtuous cycle”
between chemistry and computer science experts, where the
former identify pressing domain challenges and the latter design
new computational tools to tackle them. As new algorithmic
methods are developed, intended either for chemical problems
or for the more widespread applications of image and language
processing, the scope of synthetic problems able to be addressed
by computational assistance expands. We encourage all synthetic
and computational chemists to familiarize themselves with these
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Fig. 1 Overview of the three main categories of predictive chemistry tasks discussed throughout this review: reaction deployment, develop-
ment, and discovery. It is useful to consider the extent to which each task represents an extrapolation from known reactivity to new reactivity.
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applications andmethods to identify (a) tools that can be directly
incorporated into their R&D workows, (b) additional applica-
tions where similar tools may be impactful, and (c) opportunities
for developing novel algorithms.

This review will highlight progress towards building
machine learning models that support synthetic chemistry in
each of the areas of reaction deployment, development, and
discovery. The progression through these three topics is meant
to reect an increasing degree of extrapolation from known
reactivity to new reactivity. Throughout, we emphasize the
major questions that models have been built to address, the
myriad of approaches that have been developed to help address
them, and some goals where further development is still
needed. At times, we will go into some technical depth to
describe and distinguish different models built for the same
task, but these details may not be relevant for every reader.
Preliminaries on machine learning and
molecular representation

There are numerous reviews for machine learning in chemistry
that provide an introduction to the eld. Rather than explaining
Connor W. Coley is the Henri
Slezynger (1957) Career Devel-
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the basics of statistical learning, we instead redirect the reader
to work by Strieth-Kalthoff et al.,3 Butler et al.,8 and Janet and
Kulik.9 Here, we will only briey mention a few key consider-
ations in molecular representation and algorithm design.

Supervised learning problems are typically divided into
regression and classication tasks, which seek to predict either
a continuous scalar value or a discrete category. Both types of
problems are ubiquitous in molecular machine learning and
drug discovery applications (e.g., in the form of quantitative
structure–property relationship models), but cannot describe
every task we discuss below.While the learning objective may be
to predict reaction yield, rate, enantiomeric excess, etc., some
tasks require the prediction/generation of a molecular structure;
for example, when predicting the product of a chemical reac-
tion. Nevertheless, the types of tasks we will review are
predominantly supervised learning problems wherein we try to
recapitulate the relationship between input–output pairs
derived from experiments or computational chemistry. When
describing a supervised learning problem, it is essential to be
precise about which factors should be considered part of the
input, which factors are held constant, and which confounding
factors are omitted due to missing data.

Molecular representation is perhaps the most fundamental
aspect of molecular machine learning. In order for a model to
learn the relationship between an input and an output, we must
be able to describe the input in some objective, mathematical
way. When working with reactions, we must choose how to
represent the constituent molecules and other aspects of the
reaction conditions. There has been a substantial amount of
work on the former from cheminformatics and adjacent elds.10

The rst consideration one makes is whether a molecular
structure should be considered a rigid 3D object or a more
exible structure dened as a 4D conformer ensemble or a 2D/
2.5D molecular graph. This choice is inuenced by the learning
problem, i.e., whether the goal is to predict properties of an
ensemble of 3D conformers, a specic 3D conformer, or the
molecular identity. For most learning problems involving
experimental reaction data, representing the molecular identity
without restricting it to any individual conformation should be
appropriate. However, computing properties of 3D conformers
Chem. Sci., 2023, 14, 226–244 | 227
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has proven to be an effective way to featurize catalysts and
ligands for various learning problems, and 4D conformer
ensemble inputs have been demonstrated to yield excellent
results for, among others, solvation properties.11,12

Broadly speaking, molecular representations include struc-
ture-based ngerprints, SMILES strings,13 2D graphs, and 3D
conformations as well as descriptor-based vector representations
using computed properties oen inspired by physical organic
chemistry. Descriptors may be directly derived from molecular
structure and the two are by no means mutually exclusive.14

Each of these representations is compatible with a different set
of machine learning model architectures (see Fig. 1 of Pattanaik
and Coley15 for an illustration). What is considered “machine
learning” is ambiguous; multivariate regression and PCA
arguably count, but the implicit emphasis in this article will be
on neural networks (e.g., feedforward neural networks, graph
neural networks (GNNs),16 the transformer17) and random forest
(RF)18 models. Some components of reactions may be chal-
lenging to represent if they do not have a well-dened structure
(e.g., “air” as a reagent) or if they involve non-covalent bonds
that are poorly described by SMILES strings or molecular graphs
(e.g., many organometallic complexes, including metallocenes).
There is little standardization in, i.e., no uniformly applied
approach toward, how categorical reaction conditions are rep-
resented as inputs to machine learning models.
Reaction deployment goals

Reaction deployment involves the widespread task of retro-
synthetic planning wherein new synthetic routes are proposed
based on an algorithmic or statistical analysis of reaction data.
These techniques do not aim to develop what a synthetic
chemist would consider a “new reaction” (i.e., a new method),
but nevertheless may make predictions on new substrates via
interpolation within reaction space. In addition to retro-
synthetic planning, here we intend for it to also include the
forward task of reaction outcome prediction, as well as other
tasks to support information retrieval like classication and
Fig. 2 Overview of five key reaction deployment tasks. Reaction outco
One-step retrosynthesis is the reverse task of proposing reaction precu
multi-step planning, which aims to propose synthesis routes that end in c
aligns the atoms on both sides of a reaction, and reaction classification m
are complementary to the core synthesis planning workflow.

228 | Chem. Sci., 2023, 14, 226–244
mapping (Fig. 2). Retrosynthesis and reaction prediction are
both molecule-to-molecule transformations, but their
approaches and evaluation diverge due to the one-to-many
nature of retrosynthetic prediction and the lack of a single
correct answer for model training and evaluation. Reaction
prediction, generally simplied as major product prediction by
recent works, is also arguably easier as we typically have all the
heavy atoms in the reactant input, in contrast to retrosynthesis
where atoms in the leaving groups have to be inferred.
One-step retrosynthetic prediction

Models for one-step retrosynthesis aim to predict the “correct”
reaction precursor(s) given the product molecule. Because there
are many starting materials that could produce the target of
interest, evaluation has focused on models' abilities to reca-
pitulate experimentally-reported reactants within the highest
ranked k options. The top-k accuracy (%) on the USPTO-50k
dataset,19 a subset with approximately 50 thousand atom-
mapped reactions mined from the US Patent and Trademark
Office20 has emerged as a common (small) benchmark for
comparison despite this underspecication; larger datasets of
ca. 1 M from the USPTO have also been used (several versions of
“USPTO-full”). Alternate metrics to top-k accuracy such as
accuracy for the largest fragment21 and round-trip accuracy
evaluated by a separate forward predictor22 have been proposed,
and have since been used occasionally in parallel to top-k
accuracy. The eld has sometimes reported results when the
reaction type-or class-is known and provided as part of the
input, but this articial setting has been decreasing in popu-
larity. Some approaches have been evaluated on commercial
(e.g., Reaxys,23 CAS,24 Pistachio25) or in-house data (e.g., electric
laboratory notebook (ELN) data from AstraZeneca26 or Pzer27),
but results are also reproduced on USPTO-50k for most
approaches.

Depending on whether these one-step models make use of
reaction templates, which are reaction rules most commonly
encoded using SMARTS patterns,28 they can be broadly catego-
rized into template-based and template-free approaches; the
me prediction aims to predict the major product given the reactants.
rsors for new targets. The one-step models are called at each step of
ommercially/experimentally accessible building blocks. Atommapping
aps reactions into distinct (human-interpretable) classes, both of which

© 2023 The Author(s). Published by the Royal Society of Chemistry
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latter can be further divided into graph-edit based and
translation-based formulations.

Template-based approaches. Each template denes
substructural patterns of reactants and products that codify, at
least in a crude manner, a “rule of chemistry”. Reaction
templates can be applied to product molecules to generate the
corresponding reactants with the help of cheminformatics
soware such as RDKit.29 These templates can either be dened
by expert chemists or algorithmically extracted from atom-
mapped reactions,23,30 possibly using extraction tools such as
RDChiral.31 Expert-dened templates have had use in retro-
synthetic programs for decades and still form the knowledge
bases of expert programs like Synthia;32 typically, in expert
programs, templates are applied exhaustively and do not rely on
models to downselect the most strategic templates.

The most basic data-driven template-based methods adopt
a multi-way classication formulation to select the template
that was extracted for the experimentally-recorded reaction
given the product molecule structure. For example, NeuralSym23

uses extended connectivity (EC) ngerprints33 of product
molecules as the input into a neural network which is trained to
maximize the probability of the extracted template. Perfor-
mance gains have been made possible with additional tech-
niques like pretraining,34 rening template denition,35–37

clustering,35 or using additional features.38 Most notably, the
state-of-the-art template-based method LocalRetro36 divides
generic reaction templates into atom-change, bond-change and
multiple-change templates, and trains three different classiers
accordingly.

Apart from the classication formulation, it is also possible
to model one-step retrosynthesis as a retrieval or ranking
problem. RetroSim39 retrieves the existing molecules that are
most similar to given targets, and returns the associated
templates as the results. MHNreact,40 on the other hand,
encodes the template as well and trains a neural model to
retrieve the most applicable templates for new molecules
directly.

Template-free graph-edit based approaches. Despite
attempts to rene template denition for retrosynthesis, there
is always an intrinsic tradeoff between the generalizability and
the specicity of templates. If the templates are dened too
generally, they may not be able to capture sufficient information
about chemical environments surrounding the reaction centers,
and so the template may be used to propose disconnections that
are not chemically feasible; if they are too specic, we may end
up with an excessive number of templates each with few
occurrences, making it harder to learn when its application
would be synthetically strategic. Template-free approaches help
mitigate this limitation. The rst class of template-free methods
are based on graph edits, modelling one-step retrosynthesis as
a sequence of graph modications that convert the target
molecular graph into the reactant graphs. As most representa-
tive of such a formulation for retrosynthesis, MEGAN41 rst
determines a ground-truth order of actions (addition, deletion
or modication of atoms and bonds) using some heuristic
priority rules, aer which a graph encoder-decoder is trained to
© 2023 The Author(s). Published by the Royal Society of Chemistry
predict the actions given themolecular graphs of the target or of
the intermediates.

As variants of graph-edit based approaches, semi-template
based methods that mimic the synthon approach to retrosyn-
thesis have recently gained popularity. They rst break the
target into synthons (i.e., hypothetical reaction intermediates),
followed by a second stage to recover the reactants from pre-
dicted synthons. The reactant recovery process have been
modelled as leaving group selection,42 graph generation43 and
sequence generation44,45 conditioned on predicted synthons. In
a similar way to template-based LocalRetro, G2Retro46 later
renes the reaction centers to be bond-forming, bond-changing
and atom-changing centers to enhance performance.

Template-free translation-based approaches. Graph-edit
based approaches generally require atom-mapping to
compute ground-truth graph edit(s), which complicates their
application to large, potentially messy datasets (e.g., ones
missing some reagents or with ambiguous stoichiometry). This
makes translation-based methods, the other category of
template-free approaches, more attractive in certain scenarios.
By modeling one-step retrosynthesis as a SMILES-to-SMILES
machine translation problem, they normally do not need
atom-mapping. The single-stage, end-to-end formulation also
makes these models practically easier to train, even more so
because they leverage sophisticated techniques from the
domain of Natural Language Processing (NLP).

Translation-based baselines47–51 typically make use of
sequence models including Recurrent Neural Networks (RNN)
and the Transformers.17 The product SMILES string is rst
tokenized either character-by-character or with a regex token-
izer52 to, for example, keep four characters dening a chlorine
atom “[Cl]” together as a single token. The sequence encoder
learns to encode the tokens into some intermediate embed-
dings so that the decoder can autoregressively decode the
reactant SMILES strings. Alternate molecular
representations53–55 have been explored, and so have model
architectures that use chemistry-relevant information of the
target molecular graph.24,56,57 A number of translation-based
approaches also directly borrow existing techniques from the
NLP domain for performance improvement.21,55,57–63 Among the
many performance engineering techniques is SMILES
augmentation, which takes advantage of the fact that many
different SMILES strings may describe the same molecular
graph.64,65

Reranking, transfer learning and retrieval-based methods.
Regardless of the one-step model used, the highest-ranked
proposed precursors can always be corrected and/or reranked
to yield better suggestions. Correction can be as simple as
ltering out invalid SMILES,21,24 or with a separately trained
neural syntax corrector to convert invalid SMILES into valid
ones.66 As a more universal approach, Sun et al.60 and Lin et al.67

both train reranking models via contrastive learning, using the
primary model predictions as hard negatives (decoys) that must
be distinguish from the recorded ground-truth reactants.

There are also transfer learning approaches and retrieval-
based approaches that are unfair to be compared with other
approaches, but may nevertheless be relevant in some cases. For
Chem. Sci., 2023, 14, 226–244 | 229
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transfer learning, supervised pretraining with larger reaction
databases may boost the model performance when transferred
onto smaller datasets,68,69 although the performance gain when
the model is given more reaction data is largely unsurprising.
Similarly, some retrieval-based approaches to retrosynthesis
make the prediction task easier by only retrieving from a pre-
determined set of molecules.70,71 This may, however, signi-
cantly limit the generalizability of the model since it assumes
that a small collection of molecules includes every structure
that could be used as a reactant.
Multi-step retrosynthetic planning

Retrosynthetic planning for new targets of interest aims to
propose full synthetic pathways, rather than merely the single-
step transformations discussed so far. Single-step models can
be applied recursively to the target product until we nd the
route(s) in which all building blocks are available (e.g., present
in some buyable database) or some termination criteria are
satised (e.g., maximal path length or search time). The
extremely large search spaces of molecules and of reactions,
however, render exhaustive search inefficient if at all possible.
The number of candidate precursors to consider grows expo-
nentially with increasing number of reaction steps as one
proposes disconnection aer disconnection. It is preferable and
necessary to actively guide the search in the most promising
directions.

The multi-step planning problem ts well into a general
search framework with three phases, namely, selection, expan-
sion, and update (Fig. 3). A synthesis pathway is rst repre-
sented as a tree (or more generally a graph), withmolecules and/
or reactions being the nodes. In each search iteration, a selection
policy is employed to nd the most promising node(s) to expand
(i.e., the most promising molecule(s) to propose reactants for),
which can either be based on heuristics or some value function
of the node. This selection process is not too different from that
in latest expert systems such as Synthia, which makes use of
heuristically dened cost functions, possibly based on the
structural complexity of amolecule.32 An expansion policy is then
used to expand the selected node, for example, by applying
Fig. 3 A sample iteration of multi-step planning, which takes
a partially-expanded synthetic tree and chooses one chemical node to
expand further.

230 | Chem. Sci., 2023, 14, 226–244
a pretrained one-step retrosynthesis model. Relevant values
along the path are then updated for use in future iterations.
Multi-step planning has sometimes been viewed as a single-
player or two-player game, which may have inspired the appli-
cations of Monte Carlo Tree Search (MCTS)72 and Proof Number
Search (PNS),73 both of which have been used for solving games
in other contexts.

One fundamental challenge of multi-step planning is with
the evaluation of proposed pathways. Assessing whether
a synthetic route is “good” is highly subjective even for expert
chemists.74 Unlike in one-step retrosynthesis where the top-k
accuracy has been widely adopted as a standard metric (with
known limitations), multi-step planning has few objective
measures. Human evaluation with double-blind comparison
between proposed and reported routes75 can be valuable, but is
laborious and not scalable to large numbers of pathways. Some
computable metrics that have been used include the success
rate of nding viable pathways at different iteration limits, the
average number of iterations for nding them, and the number
of node visits, all on benchmark datasets again curated from
USPTO (e.g., on a test set of 190 target molecules76). While these
metrics serve as basis for comparison, they are heavily oriented
towards search efficiency rather than the quality and chemical
feasibility of proposed routes. Various metrics have been
proposed for quantifying route quality, including route
length,76,77 average complexity of molecules in the route,78 and
tree edit distance (TED)79 to a reference route.80 They are still far
from perfect, and a consensus on evaluation has yet to be
reached for the eld. Because it is not possible to assess whether
a proposed reaction would succeed with perfect accuracy (see
later discussions of product prediction), we do not expect that
compelling quantitative evaluations will arise in the foreseeable
future.

Monte Carlo tree search (MCTS) for multi-step planning. As
one of the most well-known approaches, Segler et al.75 were the
rst to combine a neural one-step model with MCTS. Every
search step selects the best unexpanded node, expands the node
with a template-based one-step model, and updates the scores
along the synthesis pathway. The selection policy is formulated
to achieve a balance between exploitation (i.e., highest scoring
nodes) and exploration (i.e., unvisited nodes), with a variant of
the Upper Condence bound applied to Trees (UCT)81 used in
AlphaGO.82 The selected node is then expanded with the one-
step model, and only probable transformations are kept aer
ltering with a separately trained in-scope lter—a binary clas-
sication model meant to quickly check whether a reaction
looks reasonable or not. As a distinct phase of MCTS, any new
molecule generated during expansion will immediately be
evaluated with a rollout, where a similar but more lightweight
one-step model is iteratively applied to the new molecule.
Depending on whether solutions (i.e., pathways with buyable
building blocks) are found, reward values will be assigned to the
molecules, which are subsequently used for the update phase.

The MCTS approach and variants thereof have been imple-
mented by ASKCOS83 and AiZynthFinder.84 Most notably, ASK-
COS parallelizes the tree search in the original release, and
augments the in-scope lter with a condition recommender and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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a forward predictor (discussed later); AiZynthFinder uses the
same one-step model for expansion and rollout, trading effi-
ciency during rollout for better quality of reward estimation.

Improvement of the search algorithm and structure. Other
multi-step planning works can generally be viewed as replacing
or improving various components under the general search
framework. Some explore alternative search structures and/or
algorithms such as AND-OR search and PNS, whereas others
focus on improving the selection policy and rarely, the expan-
sion policy.85 We will rst review different search algorithms
and/or structures, which are somewhat agnostic to the selection
policy.

While the search tree can be easily modied to allow for node
sharing (thereby turning it into a multi-tree as in ASKCOS or
a hyper-graph as in Schwaller et al.22), quite a few recent works
use AND-OR trees76,77,85,86 instead, whose early application to
synthesis planning dates back to the pre deep-learning era.87

The AND-OR formulation enables alternative search algorithms
toMCTS, such as Proof Number Search (PNS) to be used. We refer
the reader to Heifets and Jurisica87 for details on how the proof/
disproof numbers are dened for reactions (AND nodes) and
molecules (OR nodes). Briey, each reaction is represented as
an AND node, whose state is true only if all of its successor
nodes (which can only possibly be molecule nodes) are true.
Each molecule is represented as an OR node, whose state is true
if any of its successor nodes (which can only be reaction nodes)
is true. The selection phase in PNS picks the OR node with the
smallest proof number, or the AND node with the smallest
disproof number. The expansion phase applies a one-step
model similarly as in MCTS, and the update phase then
updates proof and disproof numbers along the pathways, which
in some cases may be generalized to depend on the value
functions.76

Kishimoto et al.77 were the rst to combine a template-based
single-step model with PNS, which outperforms MCTS aer
incorporating heuristic scores based on reaction probabilities
into the proof numbers of OR nodes. The performance was
signicantly improved later in Retro*,76 which reformulates the
search as a single-player game by combining proof and disproof
numbers into a redened reaction number using an additional
neural network value function estimator.

Improvement of the selection policy. The selection policy is
a crucial component of the overall search, as it determines
which precursors to pursue further. The UCT formula in MCTS
can be easily modied, for example, by including a “dynamic c”
parameter to dynamically force the exploration of nodes ranked
low by the one-step model.88 Another common strategy is to
better estimate the value function for any node without the
expensive rollout. Injection of chemical heuristics in selection
can be as simple as using a combination of reaction likelihood
and complexity assessment score like SCScore,89 as was done in
Schwaller et al.22 Similarly, ReTReK90 denes four heuristic
scores to guide MCTS towards convergent synthesis, ring-
forming reactions, and reactants with fewer reaction centers,
harkening back to the early days of formalizing retrosynthesis
where “x-oriented” (starting material-, stereochemistry-,
topology-, etc.) strategies were proposed.91,92
© 2023 The Author(s). Published by the Royal Society of Chemistry
While heuristic scores are generally cheap to compute, they
do not take advantage of any data on known synthetic routes
extracted from the literature. Retro*76 is among the rst to
utilize a learning-based value function estimator with a surro-
gate model. It starts by constructing routes for targets in the
training set using existing reaction data in USPTO, aer which
the value (i.e., the best entire route cost) for any target can be
computed. A simple neural model is then trained to predict this
value from structure, while maintaining preference for reac-
tions within the routes over other reactions proposed by the
one-step model. The ability of a model to navigate the search
can be further rened with online learning, possibly in an
iterative manner, with new training data generated from
running the search.88,93,94 In this way, the model will get better at
recognizing which intermediates are “most promising” and
likely to connect back to buyable starting materials. Most
recently, RetroGraph95 proposed to use a GNN on the search tree
itself to parameterize the value function and learn which
molecules to expand further, bringing its results to the state-of-
the-art in terms of search efficiency on USPTO benchmarks with
a few hundred test molecules.

Enumeration, ranking and clustering of pathways. The work
we have reviewed so far mostly focus on improving the search
efficiency, i.e., increasing the success rate of nding a pathway
with buyable building blocks while being faster and requiring
fewer node visits. For practical use, however, it may be desirable
to recommend more than a single viable pathway, which makes
enumeration algorithms of multiple pathways relevant. Com-
pRet78 ranks its enumerated pathways with heuristic scores that
combine the longest path length, mean complexity (i.e., mean
SCScore89) of molecules in the route, and molecular similarities
to reference routes. One can envision many different scoring
metrics that can prioritize/deprioritize different proposals, such
as ones estimating the cost of execution in a semi-automated
lab.96 Ranking pathways by learned scores is also possible, for
example, by training a tree-LSTM model to distinguish path-
ways with published reactions from articial ones generated by
a synthetic planner.97 Depending on the use case, pathways
similar to patent-derived ones may either be preferred (e.g.,
since they are safer to perform, arguably) or discouraged (e.g.,
when patented routes are to be evaded98). While Mo et al.97

briey experimented with clustering the routes based on their
tree-LSTM embeddings and compares routes from the same or
different clusters, Genheden et al. formally showed that some
routes can be used as representatives of the cluster they are in
(using a “tree edit distance”79 or a trained tree-LSTM model99),
thereby reducing the total number of routes to be considered.

Retrosynthesis-derived models for synthetic complexity. To
conclude the retrosynthetic planning section, we will briey
discuss a special use case of these planners as a lter during
virtual screening. In the broader context of molecule or drug
discovery, it is generally more preferable to fail early; we do not
want to screen and/or optimize thousands or millions of
molecules, only to discover that they are impractical to
synthesize. Using retrosynthetic planners as lters are intui-
tively more advantageous than structure-based heuristic scores
such as SAscore100 and SCScore,89 which may be inaccurate
Chem. Sci., 2023, 14, 226–244 | 231
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without considering any information of starting materials.
However, running the pathway search for numerous
compounds may be computationally prohibitive as each search
can take a few minutes to run.

As one of the earliest attempts, RASA101 rst implemented
a retrosynthetic planner as formulated in Corey and Cheng102

with hundreds of transformations. They then regressed a linear
model (on expert-labelled synthetic complexity scores for 100
medicinal compounds, using heuristic and route-derived
features, some of which were also manually labelled), which
can give correlation coefficients of as high as 0.8 when evaluated
with unseen compounds. Several works t route-derived scores
in other ways, including expected path length,103 probability of
successfully nding a viable path by a specic planner,104 or
a pathway length score resulting from the retrosynthetic search
itself.105 While these surrogate models speed up score compu-
tation by many folds and are agnostic to the choice of the
planner, they are inherently limited by the planner from which
the training data were generated.
Reaction outcome prediction

Forward prediction is the task of predicting the product(s) of
a reaction given reactants, and optionally, the conditions as
well. The task is typically not fully specied in a quantitative way
(e.g., there is no consideration of reactant concentrations,
among other aspects of the conditions), and is oen simplied
as predicting the single major product. In the context of reac-
tion deployment, reaction outcome prediction mainly serves to
check the plausibility of reactions proposed by the retro-
synthetic planner, as well as to give an idea about patterns of
selectivity and potential impurities or side products. While we
focus our discussion on qualitative prediction tasks, it is worth
noting that the broader scope of reaction outcome prediction
may also include quantitative properties such as rate constants,
yields, and equilibrium constants. These quantities are gener-
ally dependent on quantitative conditions, so they are used
within reaction family-specic pipelines rather than general
synthesis planning pipelines. We refer readers to Madzhidov
et al.106 for a detailed review on quantitative prediction. Most
notably, hybrid DFT/ML models have been developed to model
the activation energies of nucleophilic aromatic substitu-
tion,107,108 one of the most well-studied reactions in organic
synthesis.109,110

Template-based and template-free major product predic-
tion. We can model forward prediction as reaction type classi-
cation111 or template classication,23 similar to the template-
based approaches for one-step retrosynthesis. Given a set of
reactants, the goal is to predict the type of reaction, which
implicitly denes one or more products. A two-stage variant was
later proposed by Coley et al.112 to predict the product molecules
themselves, in which a pre-extracted set of around 1700
templates are exhaustively applied onto any reactants to
generate a list of candidate products, which are then reranked
by a learned reaction likelihood estimator to yield the nal
suggestions. In contrast to retrosynthesis, later developments
for forward prediction have been dominated by template-free
232 | Chem. Sci., 2023, 14, 226–244
approaches: either graph-edit based or translation-based, with
the only template-based competitor being LocalTransform113

which adapts a more general denition of reaction templates.
Most notably, translation-based models such as the molecular
transformer114 and follow-ups21,24,55,63,115 have shown clear
advantages over the other methods on benchmark datasets
such as USPTO_480k116 in terms of their accuracy in recapitu-
lating experimentally-observed reaction products.

Graph-edit based approaches for reaction prediction were
generally devised in a similar manner to those for retrosyn-
thesis. Both two-stage pipelines116–118 and sequential graph-edit
formulations41,119 are common. The two-stage formulations
used for reaction prediction are similar to those for retrosyn-
thesis, and actually predate them by multiple years. The major
difference with retrosynthesis is that here the reaction centers
are oen atom pairs spanning multiple reactant molecules,
rather than from a single target product. The sequential graph-
edit formulation proposed in MEGAN,41 as we have discussed in
the retrosynthesis section, works well for reaction outcome
prediction too – by reversing the graph-edit sequence. An
alternative to the sequential edit formulation is to consider it as
a sequence of electron ow as in ELECTRO120 or a global
redistribution of electrons as in NERF,121 where each step
essentially predicts simultaneous graph edits (e.g., bond
breaking and bond forming), adding some chemical intuition
to the models. Last but not least, the use of QM-augmented
graph neural networks may serve as one form of chemical
intuition, as the combination of structure-based and descriptor-
based representations have achieved promising results on out-
of-sample predictions in similar contexts.122,123

Adapting translation-based approaches for use in reaction
prediction, on the other hand, is rather straightforward; it is
still a SMILES-to-SMILES translation, except that now the inputs
and the outputs are swapped. Indeed, the development of these
approaches has almost followed the exact same trend as their
counterpart for retrosynthesis, evolving from RNN-based
sequence model52,124 into transformer-based molecular trans-
former,114 and then to the use of graph-aware encoders
including GRAT125 and Graph2SMILES.24 Some of the model
architectures and techniques discussed in the retrosynthesis
section have also been applied directly to forward direc-
tion,21,55,63,115 conrming the effectiveness of techniques such as
pretraining63 for forward prediction too.

Selectivity prediction for specic reaction types. Next to
models targeting general (organic) reactivity, a variety of tools
have been developed to target subtle reactivity questions for
specic reaction classes. A major limitation that needs to be
addressed when building a model for specic reactivity types is
the relative scarcity of relevant training data. Several strategies
have been explored to circumvent this issue. Pesciullesi et al.126

used transfer learning to build a data efficient transformer-
based model capable of predicting regio- and stereoselective
reactions on carbohydrates. Litsa et al.127 applied a similar
approach to metabolic fate predictions, i.e., prediction of drug
metabolites. Zhang et al.128 in their turn combined transfer
learning and data augmentation to train a transformer model
on only a couple thousand of Baeyer–Villiger reactions.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Tomberg et al.129 and Beker et al.130 made use of computed/
physically-meaningful descriptors to improve the data
efficiency/generalizability of their models, aimed at prediction
of the regioselectivity of electrophilic aromatic substitution and
Diels–Alder reactions, respectively. Finally, Struble et al.131

addressed the issue of limited data availability in their study of
site selectivity in aromatic C–H functionalization reactions by
designing their convolutional neural network as a multitask
model, simultaneously learning across 123 types of function-
alization with the goal of learning common patterns in the data
between individual tasks.
Reaction classication and mapping

Reaction classication and atom mapping are potential
prerequisites for downstream use in machine learning, infor-
mation retrieval when searching for similar reactions, the
annotation of predictions, or the creation of labeled datasets for
model training. In particular, atom mapped reactions are
essential for many models for retrosynthesis and reaction
prediction. They are required by template-based methods for
template extraction, and by graph-based models to identify
which subset of atoms are involved in the reaction, and which
bonds are formed or lost. For these models, atom mapping is
a crucial component of the data processing pipeline. Classi-
cation serves a less essential role in most workows as its use is
primarily in the analysis of historical trends in reaction popu-
larity,132 the organization (clustering) and presentation of model
predictions to users, or perhaps in evaluation to examine
performance as a function of reaction type. Reaction classi-
cation also allows for type-conditioned prediction such as
aforementioned selectivity prediction, as well as type-specic
condition recommendation as will be discussed in the Reac-
tion development section.

The predominant strategies for both involve the use of expert
rules and heuristics. NameRxn exemplies the expert strategy
and is a widely used tool for reaction classication, naming, and
atom mapping simultaneously.133 Each of several thousand
reaction types is essentially dened by a reaction template
(similar to those used for retrosynthesis, described above, even
if not represented identically) in a 3-tier hierarchy; if a reaction
template is able to recover the product when applied to the
reactants and reagents, then the reaction type is assigned from
the metadata of the template and the atommapping is obtained
from the newly generated product. NameRxn assignments are
routinely used as ground truth labels for data-driven models, as
discussed below.

Traditionally, atom mapping assignments have been ob-
tained not through expert template application but through
heuristic methods that pose the mapping process as an opti-
mization.134 Many methods rst nd the minimum common
substructure (MCS) between reactants and products, then
identify the map that minimizes a graph edit distance135 subject
to constraints about not changing atom types, penalties for
breaking bonds that are not labile, et cetera.136 However, MCS
alone may be insufficient for realistic reaction data that can
require inferring stoichiometric ratios and missing reactant/
© 2023 The Author(s). Published by the Royal Society of Chemistry
reagent species. Jaworski et al.137 report a procedure to
complement MCS with carefully-chosen expert rules, using
a small collection of human-annotated reactions to demon-
strate the comprehensiveness of their rule set. Comparison to
some ground truth data is important given the lack of
consensus across methods,138 despite the fact that there might
be legitimate ambiguity in the “true” atom mapping due to
mechanistic complexity. While there are relatively few data-
driven approaches to atom mapping, a recent strategy of note
is the extraction of attention weights in the transformer model
for reaction prediction, a subset of which do seem to learn the
principles of atom mapping.139 This is a logical yet clever use of
the need for transformers to “remember” which atoms in the
reactants have or have not been generated or copied to the
products.

In contrast, there are many data-driven approaches to reac-
tion classication given its direct connection to representation
learning and the ease of formulating it as a supervised learning
task: reaction / category. One benet of ML-based
classication/mapping algorithms is that they are more
tolerant to “novel” chemistries; anecdotally, a large fraction of
ELN reactions cannot be classied using rigid ontologies
dened by reaction SMARTS. Assigning integer codes or iden-
tiers to reactions has a long history in information retrieval
(i.e., by identifying reactions that undergo a similar structural
transformation). But here, at some level, the goal is to contex-
tualize a reaction in terms of human interpretable categories so
there must be a manual component of dening these categories
and labels. Schneider et al.19 use NameRxn assignments as the
ground truth to train a classier using a reaction ngerprint
representation. This concept was later applied to a different
reaction ontology, SHERC, still using reaction vectors from
ngerprints of constituent components.140 Other representa-
tions of query reactions suffice, such as a continuous embed-
ding learned from language models operating on SMILES
strings that can be combined with a simple nearest neighbor
model.141 Extensions of single-step classication include clus-
tering of full synthetic routes as discussed above as a post-
processing step in retrosynthetic planning.

Reaction development goals

Reaction development has more to do with applying predictive
models to accelerate the identication of a new and/or
improved synthetic process (Fig. 4). It renes the general
suggestion of what kind of transformation to use into a more
actionable recommendation: what specic reaction conditions
should be used? Does this type of reaction actually work for the
substrate of interest? And if it does not seem to, what new
catalyst or ligand combination might work? These questions do
all affect the “deployment” of synthetic strategies, but require
a greater level of precision and understanding of chemical
nuance than most retrosynthetic and reaction prediction tools
offer. For this reason, machine learning models may not be able
to make a correct or complete prediction based on their training
data and may instead be applied in an iterative workow
including experimental testing.
Chem. Sci., 2023, 14, 226–244 | 233
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Fig. 4 Overview of key reaction development tasks. Condition recommendation and optimization models can be built based on existing
literature and electronic lab notebook data. Substrate scope assessment models have so far mainly been designed based on high-throughput
experimentation results, where combinations of two or more reactant types are tested exhaustively. Catalyst/ligand design has been approached
either through exhaustive screening campaigns, where ligand combinations are exhaustively enumerated from a library, or through generative
modelling in recent years.
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Reaction condition recommendation and optimization

Relative to retrosynthetic planning, there has been little work
done for the a priori prediction of reaction conditions. What has
been done varies in terms of the level at which recommenda-
tions are made, e.g., qualitative vs. quantitative, reaction family-
level vs. substrate specic. It is easiest to envision an expert
system making qualitative recommendations at the level of
reaction families, as it is only necessary to recommend an
example of “typical conditions” for that family. What is more
useful in terms of actionability, however, is a substrate-specic
recommendation that understands how the conditions should
be tailored to the actual reactants to be used. A handful of data-
driven models have been built for specic reaction types using
previously acquired data from the literature or electronic lab
notebooks, including solvent/catalyst classes for Michael addi-
tions142 and ligands for Pd-catalyzed C–N coupling.143 Once
again, the quality of the training data is essential to build truly
effective models. Beker et al.144 recently argued that in some
cases, the level of noise and bias in literature data can impede
the design of models that outperform literature popularity
trends.

Global models, in contrast to these local (reaction family
specic) models, are intended to predict suitable reaction
conditions for “any” organic reaction of interest. Maser et al.
demonstrated that a single model architecture based on a rela-
tional graph convolutional neural network could recover
literature-reported conditions for Suzuki couplings, C–N
couplings, Negishi couplings, and the Paal–Knorr reaction with
an accuracy far exceeding a baseline approach that merely
predicts the most popular conditions.145 This demonstration
used data compiled from Reaxys that was further curated with
more detailed reaction role assignments, e.g., distinguishing
categories such as metal, ligand, base, solvent, and additive.
Just a few years prior, Gao et al.146 reported a broader model
similarly based on the Reaxys dataset that, without ltering by
reaction type, also showed a predictive accuracy signicantly
above the same popularity baseline. In principle, the domain of
applicability of the model covers any hypothetical organic
reaction that resembles a reaction type present in Reaxys.
234 | Chem. Sci., 2023, 14, 226–244
One caveat is that all of these models discussed so far do not
fully specify the reaction conditions; they omit details of
concentrations, orders of addition, vessel setup, etc. and only
specify the identity of the chemical species to use, primarily
because this information is absent from their training data.
There are at least two strategies to circumvent this limitation.
The rst is to curate or generate datasets where quantitative
details are present, either for global models using richer data
standards like the Open Reaction Database147 or for local
models using focused experimentation where most aspects of
the conditions are held constant.148 The second is to treat model
predictions as initial guesses for subsequent optimization
campaigns.

Empirical reaction condition optimization driven by algo-
rithmic experimental design has existed for at least four
decades.149 Briey, model-based or model-free optimization
techniques are used to propose reaction conditions in an iter-
ative manner. One or more reactions are performed, the results
are analyzed, and an algorithm proposes a new set of conditions
to try next. While the problem formulation has not changed in
years, recent trends include new treatments of discrete variables
and a shi from statistical optimization methods, e.g., using
response surface models,150 to Bayesian Optimization (BO),151,152

with ML surrogate models153 or even deep reinforcement
learning.154 Optimizing reaction yield with respect to contin-
uous parameters like concentration, temperature, and time is
the simplest setting as any number of continuous optimization
algorithms (e.g., BO, SNOBFIT) can facilitate experimental
design; fortunately, this is perfectly complementary to the
categorical reaction condition predictions that current data-
driven models are able to make.
Substrate scope assessment

A quintessential part of a synthetic methodology paper is the
substrate scope table, which demonstrates the breadth of
reactants with which the transformation is known to be
compatible. This information is useful to chemists to under-
stand when the transformation might be applicable to new
substrates; it is similarly useful for computational algorithms,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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e.g., retrosynthetic planners, to understand whether a proposed
reaction step is likely to be successful. High-throughput exper-
imentation can provide us with rich information about if (or
quantitatively, how well) a reaction works for a given substrate.
The role of machine learning in this setting can be to generalize
to new substrates to predict their behavior a priori. The question
of substrate scope is intimately related to reaction prediction,
but in practice tries to be more quantitative in its prediction of
yield/performance rather than merely providing a binary
measure.

The retrospective analysis of HTE data and the use of non-
random splits can probe a model's ability to generalize to new
substrates. For example, Ahneman et al.155's prediction of yields
for C–N coupling reactions included an evaluation of general-
ization to unseen isoxazole additives. Unlike in a random split,
the choice of molecular representation may have a large effect
on performance. Simple one-hot representations of chemical
species156,157 are inherently unable to generalize to new
compounds. For this reason, testing “extrapolative” splits has
become popular in these yield prediction tasks to gauge the
value of differentmolecular or reaction representations.158,159 An
important caveat of these studies is that data from HTE is
qualitatively different from data that is typically published. In
particular, a single paper might include only a dozen substrates;
combining datasets from multiple papers describing the same
reaction type will lead to confounding variables like the precise
choice of conditions. That is, it can no longer be assumed that
every aspect of the reaction is held constant besides the single
substrate. When these confounding variables are present in
a dataset, performance is unsurprisingly much worse.160 It is not
fair to say that one setting is more or less realistic than the
other, but the reality is that the majority of methods being
developed for predicting reaction performance are validated on
HTE data and cannot make use of the enormous diversity of
reactions available throughout the literature.

There is an additional use case for machine learning in
substrate scope assessment that is prospective in nature. Rather
than taking acquired data and trying to generalize to new
substrates, surrogate models could be used to inform the
selection of the most informative substrates to test: given
a small number of known substrates and their yields, which
new substrates/conditions should be tested in order to build the
most accurate model? This is precisely an active learning
formulation.161 Eyke et al.162 examined this question using
existing HTE data by masking labeled data and allowing
a model to choose which data points to unmask, demonstrating
a signicant improvement over random data acquisition (later
simplied as a classication task by Viet Johansson et al.163);
admittedly, more than just substrate identity are varied in these
data. Kariollis et al.164 describe a non-iterative approach
tailored to substrate scope design wherein data science was
used to inform the selection of reactants to test (Fig. 5). Starting
from an initial pool of over 730 000 aryl bromides reported in
Reaxys, those predicted to be compatible with Ni/photoredox
catalysis were kept, featurized using 168 DFT descriptors, and
clustered into 15 groupings from which the 15 centroids were
selected for testing. Selecting these 15 molecules to be
© 2023 The Author(s). Published by the Royal Society of Chemistry
maximally diverse and representative of the overall chemical
space of aryl bromides led to a wide distribution in perfor-
mance, likely more varied than if 15 substrates had been hand-
selected based on what an expert chemist assumed would
succeed. We expect that a diversity-promoting method of
selecting an initial screening set, followed by active learning
where experiments are selected for maximal information gain,
will gain traction as a systematic (and arguably less biased)
approach to explore chemical reactivity.
Catalyst/ligand design

Various excellent reviews have been written on the topic of
computational design and optimization of (novel) catalysts and
ligands in recent years.165–169 Hence, a detailed/exhaustive
overview of this eld will not be provided here. Instead, we
will focus our discussion below on a selection of recent studies
in which ML surrogate models (of varying complexity) have
been used to predict and/or optimize the performance of novel
catalysts. The supervised learning problem that is relevant for
model-guided catalyst design resembles the ubiquitous quan-
titative structure–property relationship (QSPR) formulation
where a molecular structure is mapped to a scalar property, and
therefore benets from extensive work in this area.

The least complex types of surrogate models are those based
on multivariate regression and expert-curated descriptors.
These models not only enable fast screening of extensive design
spaces of potential catalysts, but can also facilitate insights in
the underlying mechanism, through consideration of the
respective correlation coefficients between individual descrip-
tors and the selected target quantity. The best examples of this
approach can be found among others in the work by Sigman
and co-workers.170,171 Once a model is trained, hypothetical
catalysts can be evaluated to downselect ones worthy of exper-
imental validation.

Whenever non-linearity enters the picture, more advanced
surrogate models are needed, and this inevitably comes at the
expense of the aforementioned interpretability. For example,
Denmark and co-workers used support-vector machines to
anticipate the selectivity of chiral phosphoric acid-based cata-
lysts and inform catalyst selection.172,173 Corminboeuf and co-
workers have applied kernel ridge regression models to screen
for suitable transition metal complexes for homogeneous
catalysis, e.g., for C–C cross-coupling174 and aryl ether cleavage
reactions.175 Since computation of full reaction proles for such
multi-step reactions can be prohibitively expensive, a heuristic
probe can help assess the suitability of screened complexes.
Specically, surrogate models predict the relative position of
specic catalyst along a so-called “molecular volcano plot”:
catalysts located close to the plateau of the volcano can be ex-
pected to exhibit ideal substrate–catalyst binding characteris-
tics, and thus optimal thermodynamic/kinetic proles.176 In its
simplest form, ML surrogates can therefore help prioritize
which calculations to run by recapitulating the results of rst-
principles simulations, as has also been extensively demon-
strated and reviewed by Kulik and coworkers.177
Chem. Sci., 2023, 14, 226–244 | 235
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Fig. 5 Systematic design of a substrate scope promoting diversity in descriptor space. Reproduced with permission from Kariofillis et al.164

Copyright 2022 American Chemical Society.
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Beyond surrogate models that enable the exhaustive
screening of hypothetical catalyst/ligand structures, generative
MLmodels have also been developed to propose new structures.
Generative design itself is a decades-old technique,178 but deep
generative design employing modern ML techniques has led to
renewed interest. In one of the earliest examples of applying
deep generative models to molecular design, Gómez-Bombarelli
et al.179 proposed a variational autoencoder architecture in
which discrete molecule representations are converted to and
frommultidimensional continuous representations. Within the
latent vector space, gradient-based optimization can be per-
formed, enabling a directed search for optimal functional
compounds, without the need to evaluate/determine properties
for the entire chemical design space (which, as the dimensions
236 | Chem. Sci., 2023, 14, 226–244
of the space grow can quickly become extremely time- and
resource intensive). Generative molecular design has rapidly
matured and now encompasses dozens of methods. An over-
view of more recent work on this topic can be found in the
review by Elton et al.180

The utility of generative models for the design of novel
catalysts has not necessarily been established, however. When
candidate catalysts or ligands belong to combinatorial design
spaces, genetic algorithms (GAs) provide an effective way to
identify the most promising ones.181 Chu et al.,182 and more
recently Laplaza et al.,183 have described the application of GAs
to homogeneous catalyst optimization using computational
models to assess performance. The use of GAs is in contrast to
deep generative models that generate new structures atom-by-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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atom, fragment-by-fragment, SMILES token-by-token, etc.,
which are arguably capable of makingmore “creative” ideas and
exploring an even larger design space. The excitement around
generative models (particularly in drug discovery applications,
though the techniques translate well to catalyst and ligand
design) should not overshadow the reality that generation or
sampling is rarely the bottleneck in molecular discovery. We
posit that the true bottleneck is evaluation, i.e., having a good
computational oracle function or an efficient experimental
pipeline that lets one test the performance of new designs.
Evaluation is commonly approximated by surrogate ML models
as described above, but one cannot avoid the need for a well-
dened evaluation protocol that ideally correlates with experi-
mental performance.

To end this section, we want to highlight the importance of
extensive datasets to accelerate these optimization tasks. In
order to set up data-driven workows to screen vast areas of
chemical space for novel catalysts, vast libraries are needed to
effectively exploit statistically derived structure–property rela-
tionships. Open-sourcing relevant datasets can facilitate – and
democratize – the design and application of these workows.
Some catalyst/ligand datasets have been published in recent
years such as Kraken,184 OSCAR,185 and the Open Catalyst
Dataset,186 and we expect many more to be released in the near
future.

Reaction discovery goals

Up to this point, the focus of this review has been on ML
applications involving known chemistry, i.e., interpolation
based on existing data, which inherently implies that the
prediction is constrained by precedents. It should be under-
scored however that machine learning approaches can also be
employed to accelerate actual discovery of new chemistry.
Under the term ‘discovery’, we understand here the creation of
truly new knowledge, the invention of novel synthetic methods
and/or the making of extrapolative leaps which transcend the
current body of chemical knowledge.5 Before the advent of
machine learning algorithms, such discoveries usually resulted
from serendipity,187 or they were the result of (algorithm-based)
Fig. 6 Overview of key reaction discovery tasks. Mechanism eluci-
dation involves the explicit mapping of elementary reaction steps, and
intermediates formed along the way, to achieve atomistic under-
standing of the chemical process under study. New method devel-
opment involves the proposal of unprecedented reactivity by machine
learning models that transcends trivial modifications of known
templates.

© 2023 The Author(s). Published by the Royal Society of Chemistry
exhaustive screening campaigns.188 Various aspects of
algorithm/automation-accelerated chemical discovery have
been reviewed as part of Gromski et al.189's recent perspective.
Here, we will limit ourselves to two challenging (sub)domains of
chemical discovery which hold a lot of promise, yet have only
received limited attention so far: ML-facilitated elucidation of
unknown reaction mechanisms and novel method/reaction
development (Fig. 6).
Elucidation of unknown mechanisms

Most machine learning algorithms applied to chemical reac-
tivity are mechanism agnostic, i.e., they provide predicted
outcomes given a set of inputs, but provide no information
about how the chemical transformation actually transpires. The
typical explanation of a reaction mechanism takes the form of
an arrow pushing diagram and/or catalytic cycle. Nevertheless,
it is sometimes possible to obtain mechanistic clues from
a machine learning analysis indirectly. For example, in their
study of Pd-catalyzed C–N cross-coupling reactions, Ahneman
et al.155 identied a novel catalyst inhibition mechanism based
on mechanistic clues obtained from a descriptor importance
analysis within their constructed random forest models. In
a similar vein, Sigman and co-workers have demonstrated on
multiple occasions that mechanistic insight can be derived
from descriptor based multivariate linear models.190,191 In
certain cases, complex reactivity cliffs (analogous to activity
cliffs in QSAR/QSPR) can be explained by simple univariate
relationships, as in the case of a percent buried volume
parameter for phosphine ligands.192 The distillation of predic-
tive models into interpretable decision trees, even if the model
itself is not inherently interpretable, can also provide insight as
done by Raccuglia et al.,193 who derived a decision tree based on
a support vector model (SVM) trained to predict the crystal
formation of templated vanadium selenites. The resulting
human-interpretable ‘model of a model’ was used to extract
chemical hypotheses to guide future experimentation.

While these examples demonstrate that machine learning
and the acquisition of mechanistic insights are not necessarily
mutually exclusive, they can hardly be considered foolproof
transferable strategies that can readily be deployed to any
domain/application. Aer all, this type of approach implicitly
requires the model featurization to have a direct connection to
the ‘discovered’ mechanism, i.e., there has to be a direct,
human-interpretable connection between molecules' features
and the phenomenon of interest. In the absence of prior
knowledge (followed by careful feature engineering), this is not
necessarily guaranteed and hence the success of these
approaches at generating mechanistic understanding in part
rests on serendipity (though the odds of success can be
increased by casting a wide/diverse net of input descriptors/
features of the model).

A more systematic approach toward the elucidation of
unknown mechanisms may be an enumeration – followed by an
evaluation – of all the different reaction pathways which might
hypothetically connect reactants to products. Such a collection
of many competing reaction pathways is generally denoted as
Chem. Sci., 2023, 14, 226–244 | 237
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a reaction network. Over the past decade, a wide range of
computational codes have been developed for the analysis of
such networks.194 One promising exploration strategy consists
of reactive molecular dynamics (MD) simulations to sample
accessible congurations according to a pre-dened thermo-
dynamic ensemble, cf. the ‘ab initio nanoreactor’ developed by
Mart́ınez and co-workers.195 Limiting the appeal of this
approach somewhat is the exuberant computational cost of this
type of simulation – particularly when complex mechanisms
involving many different compounds are analyzed – and the
need for enhanced sampling techniques. It should be noted
however that a lot of progress has recently been made on
speeding up/reducing the computational demand of ab initio
MD simulations with the help of machine learning, e.g.,
through the development of neural network potentials196–198 and
delta-learning approaches,199 though the extent of generaliza-
tion of these techniques is not always clear, and extensive
validation will be needed before these techniques can be
applied in a true exploration mode.

Other exploration approaches employ static quantum
chemical calculations to estimate transition state structures
and barrier heights associated with elementary reaction steps.
For example, Maeda et al.200,201 explored Born–Oppenheimer
PESs based on local curvature information, starting from an
initial conguration. Graph-based rules originating from the
concepts of bond order and valence have also been applied to
identify such elementary reaction steps, cf. the work by Zim-
merman on organic and organometallic reactions (Fig. 7),202 the
reaction mechanism generator (RMG) code developed by Gao
et al.203 for gas-phase (combustion) processes, and additional
work on prebiotic reactions204 as well as by others.205,206 Finally,
the CHEMOTON project by Reiher and co-workers represents
a general, system-independent exploration approach based on
heuristic rules derived directly from (static) electronic structure
Fig. 7 Computed mechanisms for the previously unknown chain-trans
catalytic cycle, identified through reaction discovery computations. Repr
Chemical Society.

238 | Chem. Sci., 2023, 14, 226–244
to explore complex reaction networks in an efficient and unbi-
ased way.207–209

An inevitable issue that needs to be confronted during
(complex) mechanism exploration is the combinatorial explo-
sion of reaction possibilities: since the true mechanism of the
reaction is unknown, pathways involving each and every
combination of reactants/intermediates/products need to be
probed in principle. As the number of identied stable
compounds increases throughout the analysis, the systematic
enumeration effort quickly becomes intractable. Machine
learning offers a strategy to quell this combinatorial explosion
by discriminating between combinations/pathways with
respectively a high and low propensity to transpire. Provided
enough training data, graph neural networks can both predict
activation energies with almost chemical accuracy211 as well as
propose viable transition state geometries,212 while Gaussian
process based surrogate models have been used to elucidate
heterogeneous catalysis mechanisms on the y.213

Recently, several groups have started to employ reinforce-
ment learning techniques to discover mechanisms in an auto-
mated and efficient manner.214,215 Instead of exhaustively
screening all potential elementary reaction steps with a trained
surrogate model, reinforcement learning involves an agent
which is tasked with nding the most efficient pathway con-
necting reactants and products. Such pathways are constructed
through the selection of sequences of actions, i.e., elementary
reaction steps, eliciting a varying ‘reward’ by the environ-
ment.215 By optimizing the received reward, the agent learns to
select the most plausible reaction pathways on-the-y. Rein-
forcement learning holds particular promise within the context
of reaction network exploration since it bypasses the need to
explicitly enumerate and evaluate all the combinations of
elementary reaction steps and hence, it could be considered as
the ultimate epitome of efficiency when it comes to reaction
fer to monomer pathway, competing with the regular chain-growth
oduced with permission from Smith et al.210 Copyright 2016 American

© 2023 The Author(s). Published by the Royal Society of Chemistry
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network exploration algorithms if sufficiently accurate. Its use
does not mitigate the need to evaluate elementary reaction steps
through rst-principles or semi-empirical calculations.

Unfortunately, it is not realistic to avoid these calculations by
directly training mechanistic predictors on experimental data
(starting materials and nal products), though the previously
mentioned ELECTRO model—an autoregressive model that
predicts reaction products by predicting linear electron paths—
generates a “pseudo-mechanism” of sorts.120 Guided by elec-
tronegativity heuristics, ELECTRO generates arrow pushing
diagrams that may describe certain polar reactions. The model
is however incapable of understanding the role of catalysts or
reagents which we may know to be essential for reactivity
without additional supervision. Making use of expert annota-
tions, cf. Baldi's ReactionPredictor,216,217 may be promising in
this regard.
New method development

In principle, conventional retrosynthetic and reaction predic-
tion models are able to propose transformations that could be
considered novel. In the simplest case, template-free retro-
synthetic models can propose reactions that match a template
not present in the training set.58 In practice however, the degree
of extrapolation tends to be limited. “New” reactions proposed
by reaction prediction models may involve trivial modications
of known templates with only slightly altered substrates. For
example, Bort et al.'s work on GANs for the generation of Suzuki
coupling reactions relies on lters to si through many unin-
teresting reactions and ag those that exhibit novel reaction
centers or unseen templates.218 Unambiguously novel mecha-
nisms are exceedingly rare, and when they are in fact proposed
by the model, the condence by which these predictions are
made is unclear. We have previously argued that the rate of false
positives (mispredicted discoveries) is an important factor when
trying to attribute a discovery to an algorithm or autonomous
platform;5 reaction discovery is no different.

The lack of novelty exhibited by reaction prediction models
developed so far is reasonable, as none of them were explicitly
designed to generate novel reactions, though some rst steps in
this direction have been taken. For example, Segler and Wal-
ler219 model chemical reaction space as a graph, where mole-
cules are represented by nodes and reactions by edges, and
apply techniques from network analysis to predict new plau-
sible links within the graph. Through more detailed analysis of
the network edges that connect similar molecules, they were
even able to suggest promising starting points for a high-
throughput reaction discovery campaign. It should be noted
here that the denition of a novel reaction as an unprecedented
combination of known half reactionsmay not be agreeable to all
chemists.

Recently, Su et al.220 considered the accuracy of the trans-
former model architecture on “zero-shot” reaction predictions.
The goal of zero-shot learning consists of extracting accurate
predictions for an unseen class of data points from a trained
model, solely based on auxiliary information learned during
training. With their experiments, Su et al. aimed to simulate the
© 2023 The Author(s). Published by the Royal Society of Chemistry
creative process behind the invention of the Chan–Lam
coupling, which was inspired by the related Suzuki and Barton
reaction classes. As such, the authors set up three different
transformer models: one trained on the USPTO dataset without
any Chan–Lam, Suzuki and Barton reactions, another one in
which only the Chan–Lam reactions were removed from the
USPTO dataset, and nally the USPTO dataset without Chan–
Lam reactions but augmented with a set of additional Suzuki
and Barton reactions. As one would expect, the rst model
performed poorly when evaluated on Chan–Lam reactions,
reaching a top-1 accuracy below 5%, and the second model
performed only moderately better (top-1 accuracy of almost
25%). With the ne-tuning of the additional Suzuki and Barton
reactions however, the accuracy of the model shot up remark-
ably (top-1 accuracy > 55%), indicating that the transformer can
indeed be made to extrapolate well from Suzuki and Barton
reactions to the distinct, yet related Chan–Lam ones.

Despite this proof of concept that extrapolation to related
reaction classes is possible in principle, it is unclear whether
this approach can be applied in a more general/active manner
due to the need to augment the training data with specic
examples to reach a reasonable accuracy. Little is understood
about how these models are generalizing, so little is known
about what degree of extrapolation is reasonable to expect or
what the rates of false positives or false negatives might be.
There is still the issue, to reiterate, of how to generate hypoth-
eses of new interesting reactions in the rst place even if one
has access to a “virtual ask” to anticipate the outcome; brute-
force screening of reactant and condition combinations would
at least be a baseline approach.
Outlook

Many useful demonstrations of machine learning in predictive
chemistry have emerged in recent years. Some tasks are well
explored with many compelling solutions, such as retro-
synthetic analysis, while others warrant new approaches and
method development, such as mechanism elucidation.
Throughout this review, we have focused on the progression of
tasks from deployment, to development, to discovery, reecting
a scale of extrapolation ranging from “known” up to entirely
“new” reactivity.

Despite their well-publicized successes, most machine
learning tools are still not deployed routinely. Given the current
level of interest in these techniques however, one can expect
that they will become increasingly common and ubiquitous in
modern chemical laboratories in the near future, especially as
their performance is bound to continue improving as more
relevant datasets and advanced algorithms become available.
Already, retrosynthetic soware is seeing increased adoption in
industry whether using expert-dened transformations or data-
driven programs as we have highlighted in this manuscript. In
time, the mere idea of manually selecting reaction conditions
for a Buchwald–Hartwig coupling or an amide bond formation
reaction could very well be considered old-fashioned. A model
that has learned substrate-optimal conditions from the
Chem. Sci., 2023, 14, 226–244 | 239
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collective work of thousands of experimentalists will be better
equipped to choose a ligand than most synthetic chemists.

That being said, we should always keep in mind that the
power of many neural models ultimately comes from their ability
as universal function approximators, and is highly dependent on
the data on which they are trained. A few recent studies have
argued that a model may show overly optimistic performance if
train and test sets are not split by scaffold221 or by source docu-
ment,24 and that its predictive power may be limited by a lack of
negative data points in literature.222 The black-box nature of
many models renders interpretability challenging, and our
condence in neural models mainly relies on empirical veri-
cation (e.g., by cross validation) with little theoretical guarantee.
The ability to truly extrapolate is still the frontier. Few (if any)
machine learning models have actually helped us to discover new
insights and methods. Current models aren't designed to
propose new, actionable information. A new generation of
machine learning models should aim to operate at a more
fundamental level, taking mechanistic considerations into
account and/or being grounded in physics, so that more mean-
ingful extrapolation may become possible. These models would
complement descriptor importance strategies, where the bulk of
the activity in machine learning assisted mechanism elucidation
has been situated so far. We would like thesemodels to yield new
insights without being steered by human experts and eventually
be capable of open-ended hypothesis generation and discovery.
To work toward this goal, our own ongoing work in predictive
chemistry is characterized by two transitions: from qualitative to
quantitative, and from retrospective to prospective.

We would like to end this review by calling upon synthetic
chemists and physical organic chemists to enter this burgeon-
ing eld of predictive chemistry. By dening new relevant tasks,
as well as identifying failure modes of existing techniques, we
can all help push predictive chemistry beyond the frontiers
outlined above.
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151 F. Häse, L. M. Roch, C. Kreisbeck and A. Aspuru-Guzik, ACS
Cent. Sci., 2018, 4, 1134–1145.

152 B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani,
J. I. M. Alvarado, J. M. Janey, R. P. Adams and A. G. Doyle,
Nature, 2021, 590, 89–96.

153 D. Reker, E. A. Hoyt, G. J. Bernardes and T. Rodrigues, Cell
Rep. Phys. Sci., 2020, 1, 100247.

154 Z. Zhou, X. Li and R. N. Zare, ACS Cent. Sci., 2017, 3, 1337–
1344.

155 D. T. Ahneman, J. G. Estrada, S. Lin, S. D. Dreher and
A. G. Doyle, Science, 2018, 360, 186–190.

156 J. M. Granda, L. Donina, V. Dragone, D.-L. Long and
L. Cronin, Nature, 2018, 559, 377–381.

157 D. Perera, J. W. Tucker, S. Brahmbhatt, C. J. Helal,
A. Chong, W. Farrell, P. Richardson and N. W. Sach,
Science, 2018, 359, 429–434.

158 P. Schwaller, A. C. Vaucher, T. Laino and J.-L. Reymond,
Machine Learning: Science and Technology, 2021, 2, 015016.

159 A. Rakhimbekova, T. N. Akhmetshin, G. I. Minibaeva,
R. I. Nugmanov, T. R. Gimadiev, T. I. Madzhidov,
I. I. Baskin and A. Varnek, SAR QSAR Environ. Res., 2021,
32, 207–219.

160 J. Schleinitz, M. Langevin, Y. Smail, B. Wehnert, L. Grimaud
and R. Vuilleumier, J. Am. Chem. Soc., 2022, 144, 14722–
14730.

161 B. Settles, Synthesis Lectures on Articial Intelligence and
Machine Learning, 2012, vol. 6, pp. 1–114.

162 N. S. Eyke, W. H. Green and K. F. Jensen, React. Chem. Eng.,
2020, 5, 1963–1972.

163 S. Viet Johansson, H. Gummesson Svensson, E. Bjerrum,
A. Schliep, M. Haghir Chehreghani, C. Tyrchan and
O. Engkvist, Mol. Inf., 2022, 2200043.

164 S. K. Kariollis, S. Jiang, A. M. Żurański, S. S. Gandhi,
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