
ORGANIC CHEMISTRY
FRONTIERS

RESEARCH ARTICLE

Cite this: Org. Chem. Front., 2023,
10, 2913

Received 23rd April 2023,
Accepted 9th May 2023

DOI: 10.1039/d3qo00605k

rsc.li/frontiers-organic

Ratiometric sensing of β-galactosidase based on
excited-state intramolecular proton transfer
(ESIPT) and solid-state luminescence
enhancement†

He Tian, Jr., a Wei Lin, a Xi-Le Hu, a Jing-Bo Wang, a Min-Yu Zhang, a

Yi Zang, b,f,g Xin-Yan Wu, a Jia Li, *b,f Tony D. James *d,e and
Xiao-Peng He *a,c

Glycosidases play important roles in modulating the structural and functional integrity of glycoproteins

and glycolipids, and thus are promising biomarkers for disease diagnosis. While current approaches for

glycosidase detection mainly rely on an enhancement of the UV-vis absorbance or fluorescence emission

of glycosyl indicators, here we develop a ratiometric fluorescent probe for the sensitive and selective

detection of glycosidase activity based on the combined mechanisms of excited-state intramolecular

proton transfer (ESIPT) and solid-state luminescence enhancement (SSLE). The probe behaves like a

typical SSLE when glycosylated, and exhibits a ∼140 nm red-shift in fluorescence owing to activation of

ESIPT after deglycosylation. Such a large Stokes shift may facilitate the unbiased analysis of glycosidase

activities when used in diagnostic and drug-screening assays.

Glycosylation and deglycosylation reactions of biomacro-
molecules including proteins, peptides and lipids are impli-
cated in a myriad of biological and pathological processes.1–3

Deglycosylation is the removal of a glycosyl residue from a glyco-
conjugate as mediated by glycosidases, which are conserved in
almost all eukaryotes. In human cells, they mainly distribute in
the endoplasmic reticulum (ER), Golgi apparatus and

lysosomes.4,5 Glycosidases localized in the ER and Golgi appar-
atus are responsible for tailoring the N-glycans on proteins after
translation, and lysosomal glycosidases are known to hydrolyze
the glycosyl residues on glycoconjugates endocytosed by cells.

However, the abnormal expression of glycosidases is associ-
ated with human diseases. For example, during cell senes-
cence, β-galactosidase (β-Gal) and α-fucosidase are overly
expressed,6,7 and the abnormally high expression of β-Gal is
closely related to the tumorigenesis and metastasis of ovarian
cancer.8 In addition, a recent proteomics study suggests that
the expression level of cytoplasmic β-glucocerehrosidase in
liver cancer tissues is significantly lower than that in para-car-
cinoma tissues.9 As a consequence, the effective detection of
glycosidase activities is important for glycobiological studies
and disease diagnosis.

The current approaches for analysis of glycosidase activity
mainly rely on colorimetric assays, which use glycosylated indi-
cators such as 4-nitrophenol as the colorimetric substrate.
However, assays that are dependent on color changes are easily
compromised by the intrinsic color of the sample itself and are
generally of low sensitivity. To overcome these issues, activatable
fluorescent probes that exhibit a “turn-on” fluorescence upon
enzymatic hydrolysis have been developed.10–17 Based on a
variety of fluorescent dyes, molecular probes capable of sensing
glycosidases in cells and in vivo with emission wavelengths that
range from the visible to the near-infrared region, have been
synthesized in recent years.18–27
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Here, we report the construction of a ratiometric fluo-
rescent probe that exhibits a large Stokes shift of the fluo-
rescence emission wavelength upon hydrolysis by glycosidases
based on the combination of excited-state intramolecular
proton transfer (ESIPT) and solid-state luminescence enhance-
ment (SSLE).28–30 The probe is a typical SSLE system when gly-
cosylated, and after deglycosylation, the ESIPT process is acti-
vated, thereby achieving a ∼140 nm red-shift in fluorescence
emission.

To construct the ratiometric glycosidase probe, we first syn-
thesized a fluorescent reporter with dual photophysical mecha-
nisms. In the ortho position relative to the phenol group of
tetraphenylethylene (TPE), benzothiazole (BT) was introduced.
The resulting conjugate (TPE-BT) formed by the cycloaddition
of 2-hydroxy-5-(1,2,2-triphenylethenyl)-benzaldehyde and
2-aminothiophenol exhibits ESIPT due to the intramolecular
hydrogen bonding interaction between the nitrogen atom and
the phenolic proton.31,32 Then, galactose was introduced to the
phenolic site to inhibit ESIPT by removing the hydrogen-bond
donor. A benzyl group was used to connect the TPE-BT and
galactose (producing the Gal-TPE-BT probe) in order to
enhance the sensitivity for glycosidases.33 After deglycosyla-
tion, the benzyl moiety undergoes a “self-immolation” process
resulting cleavage (Fig. 1), thereby recovering the ESIPT nature
of TPE-BT. The synthetic details for the probe are shown in
Scheme S1.†

With the probe in hand, we evaluated its photophysical pro-
perties in the absence and presence of β-Gal. β-Gal isolated
from Escherichia coli was used as a model enzyme for the ana-
lysis. We first determined that Gal-TPE-BT exhibited typical
SSLE properties. The fluorescence of the probe (excited at
360 nm) was negligible in dimethyl sulfoxide (DMSO) as the
good solvent, whereas a gradual increase in the H2O fraction
of the solvent system led to a gradual fluorescence enhance-
ment at λmax = 470 nm, which is characteristic of TPE (Fig. 2a
and b). The fluorescence of the probe dropped slightly in pure
water, which is common for TPE-based fluorogens.34 This

suggests the successful suppression of the ESIPT process in
Gal-TPE-BT through the masking of the phenolic proton.

In the presence of β-Gal, the fluorescence emission spectra
of Gal-TPE-BT in mixed H2O/DMSO solvents changed substan-
tially (Fig. 2c). We observed a new red-shifted emission band
with λmax at 560 nm that was sharply enhanced as the water
fraction increased, and the original emission band with λmax at
440 nm gradually decreased. The newly emerged emission
band is assignable to the keto-state emission of TPE-BT,31

suggesting the recovery of the ESIPT mechanism of the
probe.35,36 More interestingly, the gradually enhanced fluo-
rescence at λmax = 560 nm with increasing water fraction
suggests the maintenance of the SSLE mechanism in TPE-BT,
which favours sensing applications in an aqueous phase.

To confirm the enzymatic hydrolysis, mass spectroscopic
(MS) analysis generated a MS peak assignable to TPE-BT
detected after treatment of Gal-TPE-BT with β-Gal (Fig. S1†),
corroborating that the galactosyl substrate can be deglycosy-
lated by the enzyme. We also determined that the ratiometric
fluorescence changes (I560/I440) of the probe were dependent
on the concentration of β-Gal (Fig. 3a), and a good linearity
from 1–6 U mL−1 was determined (Fig. 3b). The limit of detec-
tion of the probe for β-Gal was determined to be 0.03 U mL−1

(3σ/k, where σ is the standard deviation of ten blank samples,
and k is the linear slope of the ratiometric changes of the
probe as a function of β-Gal concentration). In addition, a
kinetic study indicated a 13.5-fold increase in the I560/I440 ratio
after the reaction between the probe and the enzyme for
300 min (Fig. S2a and b†), and the Km and Vmax were deter-

Fig. 1 Schematic illustration of the ratiometric detection of
β-galactosidase based on excited-state intramolecular proton transfer
(ESIPT) and solid-state luminescence enhancement (SSLE).

Fig. 2 Fluorescence emission spectra of (a) Gal-TPE-BT (10 μM) and (c)
TPE-BT (10 μM) in DMSO with increasing water fractions. (b) Plotting the
maximum fluorescence emission intensity of Gal-TPE-BT at 470 nm in a
mixed solvent of H2O/DMSO as a function of water fraction ( fw). (d)
Plotting the ratios of the maximum fluorescence emission intensity of
TPE-BT at 560 nm and 440 nm in a mixed solvent of H2O/DMSO as a
function of water fraction ( fw). The excitation wavelength used for Gal-
TPE-BT and TPE-BT is 360 nm.
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mined to be 27 μM and 0.04 μM s−1, respectively, from the
Lineweaver–Burk plots (Fig. S2c and d†). We also measured
the Km and Vmax of a commercial fluorescent β-Gal probe,
4-methylumbelliferyl-β-D-galactoside (4-MU-β-Gal) (Fig. S3†).
The ∼twofold smaller Km of Gal-TPE-BT (27 μM) than that of 4-
MU-β-Gal (48 μM) suggests a higher affinity of our probe for
the enzyme.

Next, we studied the morphological changes of Gal-TPE-BT
before and after the enzymatic reaction by high-resolution
transmission electron microscopy (HRTEM). In its representa-
tive TEM images (Fig. S4†), we observed tube-like structures of
Gal-TPE-BT, and after addition of β-Gal, aggregated particles
began to emerge. In addition, DLS (dynamic light scattering)
used showed that the hydrodynamic parameter of the probe
after reaction with β-Gal was much larger than that of Gal-
TPE-BT without the treatment of β-Gal (Fig. S5a†). These
results corroborate the SSLE property of the probe before and
after treatment of the enzyme. The critical micelle concen-
tration (CMC) of the probe was determined to be 5.2 μM
(Fig. S5b†), and subsequent DLS and fluorescence analyses by
continuously incubating the probe in PBS for 60 h suggest the
good colloidal stability of Gal-TPE-BT (Fig. S5c and d†).

Finally, we evaluated the selectivity of Gal-TPE-BT with a
range of different biological species (Fig. 4a and b). We deter-
mined that the presence of unselective enzymes including lyso-
zyme, ribonuclease A (RNase A), cellulase and alkaline phos-
phatase (ALP), and biologically relevant species including
γ-glutathione (GSH), vitamin C (VC) and bovine serum
albumin (BSA) did not cause the fluorescence emission of the
probe to change. More importantly, the treatment of Gal-
TPE-BT with a β-glucosidase (β-Glc) that hydrolyzes glucose,
which is the C4-epimer of galactose similarly caused minimal
fluctuation in fluorescence of the probe. These results suggest
the good selectivity of Gal-TPE-BT for β-Gal sensing.

To conclude, the incorporation of both ESIPT and SSLE
mechanisms into a single molecular probe led us to achieve
the ratiometric detection of β-Gal activity over a range of other

enzymes. The large Stokes shift associated with the probe
makes it a promising tool for the unbiased analysis of glycosi-
dase activities in diagnostic and drug-screening assays. This
research also paves the way for the design of sensitive fluo-
rescent probes for the detection of other enzymatic activities
based on mixed photophysical mechanisms.37–41
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