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Renewable energy is essential for the future of the Earth and
this review surveys the recent development of dye-sensitized
solar cells for the conversion of solar-to-electrical energy
with a focus on the use of coordination compounds of the
more abundant first row d-block metals, in particular copper,
iron and zinc. The applications of these metal complexes
both as sensitizers and as redox shuttles are reviewed, and
the contributions made by our own group are set in the
context of the progress made in other research groups.
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The use of renewable energy is essential for the future of the Earth, and solar photons are the ultimate
source of energy to satisfy the ever-increasing global energy demands. Photoconversion using dye-
sensitized solar cells (DSCs) is becoming an established technology to contribute to the sustainable
energy market, and among state-of-the art DSCs are those which rely on ruthenium(i) sensitizers and
the triiodide/iodide (I37/17) redox mediator. Ruthenium is a critical raw material, and in this review, we
focus on the use of coordination complexes of the more abundant first row d-block metals, in particular
copper, iron and zinc, as dyes in DSCs. A major challenge in these DSCs is an enhancement of their
photoconversion efficiencies (PCEs) which currently lag significantly behind those containing ruthenium-
based dyes. The redox mediator in a DSC is responsible for regenerating the ground state of the dye.
Although the I57/I7 couple has become an established redox shuttle, it has disadvantages: its redox
potential limits the values of the open-circuit voltage (Voc) in the DSC and its use creates a corrosive
chemical environment within the DSC which impacts upon the long-term stability of the cells. First row
d-block metal coordination compounds, especially those containing cobalt, and copper, have come to
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the last decade, with particular attention to Cu?*/Cu* redox mediators which, when coupled with

DOI: 10.1035/d1sc06828h appropriate dyes, have achieved V¢ values in excess of 1000 mV. We also draw attention to aspects of
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Introduction s.emlconductors such. as silicon are optimal for' suf:h apphcz%-
tions, but have the disadvantage that the material is not opti-

Why solar energy? cally transparent and the majority of the photoelectric effects

The United Nations Member States adopted the 2030 Agenda occur at the surface. This prompted investigations of optically
for Sustainable Development in 2015. This recognizes seventeen  transparent materials which, of course, do not absorb visible
sustainable development goals (SDGs), of which SDG7 has the light. For electron excitation to occur, wide-band gap
aim to “ensure access to affordable, reliable, sustainable and
modern energy for all” by 2030." Renewable energy incorporates
biomass, wind, hydroelectric, solar and geothermal technolo- 25

gies. Because of their unlimited and cost-free supply, solar g wv E Visible E Infrared  —>
Photon§ are an ideal source of energy‘ to satisfy the evef- ~ o] | : SunligkestTop ol thaatooiphars
increasing global demands. Moreover, in contrast to fossil £ !
fuels, solar energy poses no direct threat to the environment. 2 !
The solar spectrum (Fig. 1) peaks in the visible region, and @ 151 5230°C Blackbody Spectrum
the latter accounts for ca. 40% of the total radiation; 55% falls in _E
the infrared (IR) region, and the remaining 5% in the ultraviolet g 11 A e
(UV). When light falls on an n-type semiconductor and the =
photons possess energies equal to or greater than the band gap, S 054
electrons are excited from the valence to the conduction band of @ H,0 A:;:mm" pands
the semiconductor. Photoenergy conversion then follows to a % i

0-
transform  light into electrical current. Naturally, 250 500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)

Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Fig. 1 The air mass (AM) 15 solar spectrum [https://
Basel, Switzerland. E-mail: catherine.housecroft@unibas.ch commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg].
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semiconductors such as TiO, (band gap = 3.2 eV for anatase)
must absorb photons with energies in the UV region. From
Fig. 1, it is clear that pristine wide-band gap semiconductors are
not appropriate for efficient photoenergy conversion. Although
a reactive titanium-terminated anatase surface phase with
a band gap of <2 eV has been discovered,> the most convenient
method of utilizing longer wavelength radiation is to func-
tionalize the surface of the semiconductor with a material that
absorbs in the visible region. Such materials are termed sensi-
tizers or dyes and critically, the ground state (S) of the sensitizer
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Fig. 2 (a) A schematic representation of an n-type DSC. S = ground
state of the dye; S* = excited state of the dye; Er = Fermi level; Econg =
conduction band of the semiconductor; E,.qox = redox potential of the
redox shuttle (a component of the electrolyte); Voc = open-circuit
voltage. Working electrode = photoanode. The glass substrates may
be replaced by polymer substrates. (b) Recombination processes: (i)
decay of the excited state dye back to the ground state; (ii) recombi-
nation of the injected electron with the oxidized dye; (iii) recombina-
tion of the injected electron with the oxidized form of the redox
shuttle. (c) A typical research DSC with glass/FTO/TiO,/dye photo-
anode, glass/Pt counter electrode, and electrolyte. This particular DSC
contains an N-heterocyclic iron(i) dye and an |57 /I~ redox mediator
(photo: Dr Mariia Becker, University of Basel).

1226 | Chem. Sci, 2022, 13, 1225-1262

View Article Online

Review

must lie below the conduction band of the semiconductor, and
the excited state (S*) above the conduction band (Fig. 2a).

The dye-sensitized solar cell: a general overview

The Gritzel n-type dye-sensitized solar cell (DSC) was developed
in the early 1990s, and the use of sintered nanoparticles of TiO,
to produce an enormous surface area while maintaining a small
device is crucial to the design.*® The principle of the working
device is shown schematically in Fig. 2a with detrimental
recombination processes shown in Fig. 2b; Fig. 2c shows
a typical laboratory device. The conducting glass must be
transparent and is typically colourless glass coated with
fluorine-doped tin oxide (FTO). The processes at the photo-
anode (Fig. 2a) are the sequential photoexcitation of the dye,
electron injection into the semiconductor, and electron transfer
from the reduced form of the redox shuttle to the oxidized form
of the dye. After dye-excitation and electron injection, the dye is
formally in an oxidized state. The redox mediator (also referred
to as a redox shuttle or couple) is responsible for transferring
electrons from the counter electrode through the cell to regen-
erate the ground state of the dye. A note at this point about
terminology: it is important to distinguish between the redox
mediator and the electrolyte - the electrolyte comprises the
redox mediator and additives in a solvent.

The three essential processes mentioned above (dye photo-
excitation, electron injection and dye regeneration) compete with
non-beneficial electron transfers (Fig. 2b): decay of the excited
state dye back to the ground state (i.e. no net electron injection),
recombination of the injected electron with the oxidized dye
(again, no net electron injection), and recombination of the
injected electron with the oxidized form of the redox shuttle
(once again, no electron injection). Minimizing recombination
processes (back-reactions) at the interface between the semi-
conductor, dye and redox mediator is essential, and common
ways to address this are through the use of co-adsorbents and
additives. A popular additive is 4-tert-butylpyridine (TBP) which
is added to the electrolyte in the DSC and leads to a raising of the
conduction band (E.ong, Fig. 2a) with a concomitant increase in
the open-circuit voltage (Voc, Fig. 2a). The addition to the dye of
co-adsorbents such as chenodeoxycholic acid (cheno, Scheme 1)
decreases the aggregation of dye molecules, and enhances elec-
tron injection.”® Computational studies play an important role in
the development of structure-property relationships for molec-
ular sensitizers, and interactions between dye molecules and
between dye and coadsorbent species.'***

In an n-type DSC, the counter electrode functions as a cata-
lyst (the Pt coating shown in Fig. 2a) for regeneration of the

HO™

Scheme 1 The structure of chenodeoxycholic acid (cheno).
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redox mediator and as a contact in the electrical circuit. In this
type of DSC, light harvesting is governed by the dye adsorbed on
the n-type semiconductor. In a double-junction or tandem DSC,
both the photoanode and photocathode can be functionalized
with dyes, and the solar energy conversion in the cell could,
theoretically, reach ca. 40%." However, progress in the devel-
opment of p-type DSCs is hampered by the lack of effective
combinations of wide-band gap p-type semiconductors and
sensitizers. The last decade has seen an explosion of interest in
the use of quantum dot sensitized solar cells and perovskite
solar cells. These areas are out of the scope of the present
review, and readers are directed to the following articles and
references therein."*>*

In this review, we focus on n-type DSCs and, critically, on the
need to develop DSCs incorporating sustainable materials.”®
Ideally, all components in a DSC should utilize sustainable
materials. Use of TiO, for the photoanode fits this criterion,
with titanium having a natural abundance in the Earth's crust of
ca. 5600 ppm.*” The major use of TiO, is as a white pigment, and
the United States Geological Survey (USGS) reported in 2021
that world resources of titanium minerals exceed two billion
tons and that there is currently no recycling of TiO,.>® To date,
many of the best-performing DSCs have incorporated ruth-
enium(n) dyes and iodine-based redox mediators. Since ruthe-
nium has an extremely low abundance in the Earth's crust (ca.
0.001 ppm),” dependence on this metal for large-scale DSC
production is not sustainable. Perhaps less well recognized is
the low crustal abundance of iodine (ca. 0.14 ppm),*” and, as
discussed later, electrolytes containing the I;7/I" redox couple
possess intrinsic corrosive properties.

The highest DSC photoconversion efficiency (PCE, n) values*-**
are achieved by optimizing not only the molecular design and
performance of the sensitizer.**** Tuning the composition of the
electrolyte is critical,”** as are optimizing both the fabrication of
the photoanode, and the materials and fabrication of the counter
electrode.” State-of-the-art dyes for n-type DSCs are typically
ruthenium(n) coordination compounds,**** zinc(u) porphyrinato
or phthalocyanato complexes,*****>” and metal-free organic
dyes.””*®® Natural pigments have also been thoroughly investi-
gated, but their photoconversion efficiencies are limited.***

We end this introduction with several general comments
concerning the need for consistency in reporting data. Criti-
cally, DSCs should be fully masked to prevent the over-
estimation of their performance.®** Wherever possible, we have
only made direct comparisons between DSCs fabricated under
the same or similar conditions. A second problem in over-
viewing the DSC literature is knowing the reproducibility of cell
performances. Not all researchers report data for multiple
devices. This appertains, not only to Jsc and Vo values, but also
to electrochemical impedance spectroscopic (EIS) data. We
recently explored the reproducibility of EIS data for DSCs
sensitized with N719 and SQ2 (Scheme 2). Whereas data for
DSCs with N719 were reproducible, SQ2 proved to be an
instructive example of a dye for which the EIS parameters can be
rather variable within one set of DSCs with identical compo-
nents and fabricated by the same person and in the same
fashion.®

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Structures of the dyes N719 and SQ2.

A general note about light intensity is necessary. For most
routine evaluations of the performances of DSCs, devices are
illuminated under a light intensity of 1 sun = 1000 W m~> = 100
mW cm >} However, photoconversion efficiencies increase
when lower light intensities are used. Such low or diffuse light
sources are relevant to indoor applications of DSCs, and it is
important to note that DSCs are reliable devices even under
diffuse lighting conditions.***

A final comment to the introduction is that, although this
review strives to cover the literature as broadly as possible, it is
not fully comprehensive. We have chosen not to include studies
in which the metal complexes used as sensitizers were not
adequately characterized, or in which insufficient information
was provided about cell fabrication.

An unfriendly chemical environment
within the DSC: enter the first row
metals

The I3 /I" redox mediator works: why change it?

For efficient photoconversion efficiency, a critical factor for
aredox mediator is that it can regenerate the ground state of the
dye on a faster timescale than recombination events which
negate electron injection. The I;7/I" couple fulfils this
requirement and has become an established component of
most DSCs.*® A disadvantage, however, is that using an I3~ /I
redox mediator limits values of the open-circuit voltage, Voc
(Fig. 2) to 700-800 mvV.>>* Furthermore, its use creates
a corrosive chemical environment within a dye-sensitized solar
cell, limiting DSC stability.***® Thus, the past decade has seen
the development of alternative and less corrosive redox medi-
ators having more positive reduction potentials than I;~ in
order to increase values of V.%°”> The most notable are those
based on Co**/Co*" and Cu**/Cu’ couples. In this review, we
focus mainly on the use of first row d-block metal-ion redox
mediators with dyes containing first row d-block metals, and
the discussion in this section on the use of Co**/Co*" and Cu**/
Cu’" redox mediators with other dyes is limited to introductory

+ In the literature, authors report light intensity in units of either W m~> or mW
cm™? (1 sun). For consistency, we use W m~2 throughout the review, and note that

1000 W m~2 = 100 mW cm 2.

Chem. Sci., 2022, 13, 1225-1262 | 1227


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1sc06828h

Open Access Article. Published on 05 2022. Downloaded on 21.07.2024 4:25:08.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

comments and selected highlights, as well as reviews to lead the
reader into the relevant literature.

C0**/Co”* redox mediators: organic and zinc(u) porphyrin
dyes

The early history of the development of Co®>*/Co** redox medi-
ators incorporating [Co(bpy)s]**/[Co(bpy)s]** and [Co(phen);]**
[Co(phen);]** and their derivatives (bpy = 2,2"-bipyridine, phen
= 1,10-phenanthroline) and [Co(dbbip),]**/[Co(dbbip),]**
(dbbip = 2,6-bis(1-butyl-1H-benzo[d]imidazol-2-yl)pyridine,
Scheme 3) was documented in 2012 by Hamann,”” and the
electrochemical properties of Co**/Co®>" couples and their
applications in n-type DSCs containing zinc(u) porphyrin and
organic dyes have been thoroughly reviewed.””*”® One of the
beauties of the Co**/Co®>" redox couple is that the standard
reduction potential, E° (and hence E,eqox, Fig. 2a) can be easily
tuned by varying the coordinated ligands, and this is a way of
increasing the value of Vo (Fig. 3). Berlinguette and coworkers
demonstrated a linear relationship between E°(Co**/Co®*) and
Voc for a series of [CoL;]**/[CoLs]*" redox couples containing
bpy, 2,2"-bipyrimidine (bpm), 4,4’-di-tert-butyl-2,2-bipyridine or
4,4'-di-tert-butyl-2,2'-bipyrimidine (Scheme 3) ligands.*® The use
of polydentate ligands enhances the stability of the cobalt(u)
complexes with respect to ligand dissociation.®**

The use of the Co®>*/Co®" redox shuttle was initially demon-
strated by Nusbaumer et al. who showed that the redox poten-
tial of [Co(dbbip),]**/[Co(dbbip),]** in MeCN was comparable to
that of I;7 /I, and that the kinetics of electron transfer of the
two redox shuttles in a DSC were similar. Moreover, the weak
light absorption by both [Co(dbbip),]**
[Co(dbbip),]** leads to minimal competition with light
absorption with the dye in a DSC.*® This is also true of other
cobalt(u)/(ur) coordination compounds used as redox mediators.
Potentials for the [Co(bpy)s]**/[Co(bpy)s]*" and [Co(phen);]**
[Co(phen);]** couples are +0.56 and +0.62 V, respectively (vs.
NHE);* these are significantly more positive than E° for I3 /I~
(+0.31 V vs. NHE). In 2010, Feldt et al. achieved V¢ and Js¢
values of 920 mV and 10.7 mA cm 2, respectively, for DSCs
containing a combination of [Co(bpy)s]**/[Co(bpy)s]** with the
donor-m-bridge-acceptor (D-m-A) triphenylamine dye D35
(Scheme 4) under a light intensity of 1000 W m™2. Mass trans-
port limitations associated with the sterically demanding

visible and

2,6-bis(1-butyl-1H-benzo[djimidazol-2-yl)pyridine
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Scheme 3 Structures of bpy, phen, bpm, dbbip, bpy-pz, 4,4’-Me,bpy,
4,4’ -'Buybpy and 4,4’ -di-tert-butyl-2,2’-bipyrimidine (4,4’-'Bubpm).
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Fig. 3 Schematic illustration of the relative E,.q0x levels (in red) for two
representative Co>*/Co?* redox mediators with respect to the I3/~
couple and the effect on the value of Voc (see Fig. 2a for complete
DSC diagram).

cationic cobalt complexes were circumvented by careful
matching of energy levels of dye and the [Co(bpy)s;]**/
[Co(bpy)s]** couple. With D35, the overall photoconversion
efficiency was 6.7%, and the inclusion of the butoxy chains in
dye D35 reduced recombination.®* Note that in [Co(dbbip),]**/
[Co(dbbip),]**, long alkyl chains were introduced into the cobalt
complex, but it proves beneficial to incorporate them into the
dye structure rather than the cobalt redox mediator. On the
other hand, Mozer and coworkers have shown that the electron
lifetime increases considerably when both the dye and the Co®"/
Co** shuttle contain alkyl chains.®

A dramatic improvement in PCE to 11.9% was achieved by
combining the [Co(bpy);]**/[Co(bpy)s]** shuttle with the donor-
m-bridge-acceptor zinc(u) porphyrin dye YD2-0-C8 (Scheme 4),
and co-sensitization with Y123 (Scheme 4) led to a further
enhancement to 12.3%. With the related dye GY50 (Scheme 4),
arecord PCE of 12.75% was attained. Key to these successes are
the high values of V¢ (965 mV for a DSC with YD2-0-C8, and
885 mV with GY50),>>**” and Fig. 3 illustrates the effect on
Eredox (defined in Fig. 2a and 3) upon going from I; /I” to
[Co(bpy)s]**/[Co(bpy)s]**. A further lowering of the potential is
achieved upon going from [Co(bpy);]**/[Co(bpy)s]** to [Co(bpy-
pz),]>"/[Co(bpy-pz),]>" (E° = +0.86 V vs. NHE, see Scheme 3 for
bpy-pz), and DSCs sensitized with dye Y123 coupled with
[Co(bpy-pz),]**/[Co(bpy-pz),]** achieved Vo, Jsc and PCE values
0f 1020 mV, 12.54 mA cm ™2 and 8.87% under an illumination of
1000 W m ™2, This compared with Voc = 754 mV, Jsc = 13.01 mA
em > and 7 = 6.57% for an analogous DSC containing I3 /I".
The DSC performances are also dependent upon the thickness
of the TiO, layer.*® The addition of electron-donating TPAA
(TPAA = tris(4-methoxyphenyl)amine) to the electrolyte is
beneficial. TPAA (like (2,2,6,6-tetramethylpiperidin-1-yljoxyl,
TEMPO®) acts as an intermediate redox species, increasing
the rate of dye regeneration. Electrons are transferred from
TPAA to the oxidized dye in an extremely fast process (100-1000
ps), and are then transferred from [Co(bpy);]** to the oxidized
form of TPAA (TPAA'"). DSCs with the organic dye LEG4

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Structures of some of the high extinction coefficient metal-free and zinc(i) porphyrin dyes used with cobalt(i)/(i) and/or copper(i)/(1)

redox mediators.

(Scheme 4) and containing [Co(bpy);]**/[Co(bpy);]*" as redox
shuttle, with and without TPAA in the electrolyte, attained
values of Vo, Jsc and n values of 915 vs. 835 mV, 14.1 vs. 12.1 mA
em > and 9.1 vs. 7.2%, respectively, under an illumination of
1000 W m~ 2% In 2014, Kakiage et al. reached PCEs of up to
12.5% in DSCs sensitized with the dye ADEKA-1 (Scheme 4)
combined with the [Co(5-Clphen);]**/[Co(5-Clphen);]*" redox
mediator (5-Clphen = 5-chloro-1,10-phenanthroline, E° =
+0.72 V vs. NHE). For a set of three cells, average values of Vg,
Jsc and PCE values were 1036 mV, 15.6 mA cm > and 12.5%
under an illumination of 1000 W m™ .32 This PCE was enhanced
further by co-sensitization of ADEKA-1 with LEG4 (Scheme 4),
and for four DSCs, the average V¢, Jsc and PCE values were
1014 mV, 18.27 mA cm > and 14.3% (light intensity 1000 W
m~?) and using a [Co(phen);]**/[Co(phen);]*" redox shuttle.*
Yella et al. demonstrated the effects of pore size and porosity of
the TiO, layer and the viscosity of the electrolyte on DSC
performance. They concluded that porosity and pore size must
be modified for different combinations of dyes and electrolytes
in order to minimize the diffusion limitations of the cobalt-
based redox mediator,”* and these conclusions are consistent
with those of Boschloo and coworkers.*?

Co0**/Co”* redox mediators: ruthenium(n) dyes

The I; /I redox shuttle was originally optimized for compati-
bility with ruthenium(u) dyes such as N719 and N3 (Schemes 2

© 2022 The Author(s). Published by the Royal Society of Chemistry

and 5). In contrast to the metal-free and zinc(u) porphyrin dyes
described above, a simple move from I;"/I" to cobalt-based
redox mediators to increase Vo was not achieved with these
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Scheme 5 Structures of the ruthenium(i) dyes discussed in the text;
see Scheme 2 for the structure of N719.
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conventional Ru(n) dyes due to dominant recombination
processes. Intermolecular interactions between the ruth-
enium(i) sensitizer and cobalt(ur)/(1) species must be limited,
and the use of a coadsorbent such as cheno,?® and/or a shift in
design of the ruthenium dye were required.®**® We provide
selected examples here, and otherwise direct the reader to
reviews that are focused on this topic.”*”%”” Dye regeneration by
redox mediators such as [Co(4,4-Me,bpy)s]**/[Co(4,4'-
Me,bpy);]** and [Co(4,4'-'Bu,bpy)s]**/[Co(4,4'-'Bubpy)s]** (see
Scheme 3 for bpy derivatives) is efficient for [Ru(bpy),(dcbpy)]
[PF¢], (Scheme 5).°” Dye C101 (Scheme 5) possesses long chains
to militate against recombination but is still representative of
a ‘conventional’ ruthenium(u) dye.”® Under irradiation of
1000 W m~>, a DSC with C101 combined with a [Co(bpy)s]**/
[Co(bpy)s]** redox shuttle gave Voc = 735 mV and Jsc = 6.5 mA
cm ? and overall = 3.6%. Upon going to the more sterically
demanding dye TT-230 (Scheme 5), a higher V¢ was attained
(774 mV) which could be boosted to 804 mV with the addition of
the coadsorbent cheno. However, this was at the expense of Jsc
(3.3 and 3.0 mA cm ™%, without and with cheno).®® Thiocyanate-
free ruthenium(u) dyes are a promising route forward for
reducing recombination and enhancing compatibility with
cobalt-based redox mediators,”'* and cyclometallated ruth-
enium(n) sensitizers have also been investigated.'”'*> PCE
values of between 6.1 and 9.4% were obtained for DSCs sensi-
tized with a series of cyclometallated Ru(u) dyes using
a[Co(phen);]**/[Co(phen), > redox shuttle; the best performing
dye (Voc = 845 mV, Jsc = 14.55 mA cm™ > and 1 = 9.4% under
a light intensity of 1000 W m~?) is SA246 shown in Scheme 5.1

Cu”*/Cu’ redox mediators: breaking the 1000 mV Vo barrier

Copper-based redox mediators>'*"* entered the arena in
2005, but little further progress was made until a report from
Bai et al. in 2011."" This was followed by highly promising results
from Li et al.,'*® Magni et al.,'” Freitag et al. ' and Saygili et al.'™
Homoleptic bis(diimine)copper(1) complexes such as [Cu(bpy),]"
and [Cu(phen),]" are tetrahedral, while the corresponding cop-
per(u) compounds are tetragonal. Flattening of the coordination
sphere upon oxidation means that the Cu* to Cu®>" potential is
shifted to more positive values when substituents are introduced
into the 6,6'-positions of bpy or the 2,9-positions of phen. For
example, E° values (vs. NHE) are +0.87 V for [Cu(Me,bpy),]*"/
[Cu(Me,bpy),]", +0.97 V for [Cu(Me,bpy),]**/[Cu(Me,bpy),]", and
+0.93 V for [Cu(Me,phen),]**/[Cu(Me,phen),]".*"* Ligand abbre-
viations are defined in Scheme 6. In order to provide good
solubilities in typical electrolyte solvents, the copper complexes
are usually used as the [TFSI]” salts (Scheme 6).

Bai et al. showed that DSCs sensitized with the organic dye
C218 (Scheme 4) and using a [Cu(Me,phen),]**/[Cu(Me,phen),]"
redox couple could attain an 7 value of 7.0% under irradiation of
1000 W m 2, with values of Jsc = 11.29 mA cm 2 and Voc =
932 mV. Analogous DSCs with an I3 /I" redox mediator achieved
higher Jsc (13.74 mA cm™?) but significantly lower Voc (714 mV),
leading to a lower overall n value of 6.5%.'” These results were
pivotal in delineating the use of copper(u)/(1) redox mediators, but
at the same time, Bai et al. also commented upon the very low
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Scheme 6 Structures of some of NAN ligands used in copper(i)/
copper() redox mediators, and the structure of the [TFSI]™ anion.

electron-transfer rates at the counter-electrode interface and the
need for careful choice of counter-electrode materials compatible
with copper(u)/(1) redox couples.’” The dyes C218 and LEG4 have
related structures (Scheme 4), and Freitag et al. demonstrated
that masked DSCs containing LEG4 and the [Cu(Me,phen),]*"/
[Cu(Me,phen),]” redox shuttle realized open-circuit voltages in
excess of 1000 mV under irradiation of 1000 W m™>. The best
performing DSC exhibited values of Voc = 1020 mV, Jsc = 12.6
mA cm 2 and 1 = 8.3%, with the high value of V¢ exceeding the
875 mV recorded for a cell containing LEG4 and the cobalt-based
redox couple [Co(bpy)s]**/[Co(bpy)s]*". The copper-based redox
mediator was found to exhibit both higher diffusion coefficients
and faster dye regeneration than [Co(bpy)s]**/[Co(bpy)s]*".
However, this study revealed a number of recombination path-
ways involving the [Cu(Me,phen),]*"/[Cu(Me,phen),]" redox
mediator, including the reductive quenching of the excited-state
dye and interaction with the FTO/TiO, layer.*® The low driving
force (0.2 eV) for regeneration of the dye'® could be decreased
further by using a [Cu(Me,bpy),]**/[Cu(Me,bpy),]" redox shuttle
as was shown by Saygili et al."* and by Li et al.*® in DSCs with the
dye Y123 (Scheme 4). Only a small structural perturbation occurs
upon going from [Cu(Me,bpy),]*" to [Cu(Me,bpy),]’, and vice
versa, and this contributes to rapid electron self-exchange. Table 1
presents data from the independent work of Li et al. and Saygili
et al. demonstrating the influence of varying the redox shuttle
from I;7/I" to [Co(bpy)s]’*/[Co(bpy)s]”" to [Cu(Me,bpy),]*"/
[Cu(Me,bpy),]". The rise in Vo is the essential parameter that
leads to enhanced photoconversion efficiency. Of particular
importance is the observation that the photovoltage remains
above 1000 mV down to 0.2 sun light intensity, making the use of
copper-based redox mediators appealing for indoor applica-
tions."* These landmark results are not confined to liquid DSCs.
In 2015, Frietag et al. demonstrated 8.2% efficiency in solid-state
DSCs under a light intensity of 1000 W m ™2 using a solid hole
transport material comprising a mixture of [Cu(Me,phen),]
[TFSI], and [Cu(Me,phen),|[TFSI]| with TiO, sensitized with the
dye LEG4. The notable value of n = 8.2% was a consequence of
high values of Voc = 1010 mV and Jsc = 13.8 mA cm™ 2.2

Cu®*/Cu”’ redox mediators: interactions with Lewis base
additives in the electrolyte

Earlier, we noted the use of TBP as a common additive to the
electrolyte in DSCs containing the I;"/I" redox couple because

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The effects of the redox mediator on DSC performances using dye Y123 (under a light intensity of 1000 W m~2) from the work of Li

et al*°® (entries 1-3 in the table) and Saygili et al.*** (entries 4-6)

Entry Redox couple Jsc/mA ecm 2 Voc/mV /% /%

1 L/ 15.8 £ 0.3 724 + 10 70.4 + 0.6 8.0 + 0.2
2 [Co(bpy)s]**/[Co(bpy)s]** 15.3 + 0.3 844 £ 5 71.2 + 0.7 9.2 +0.1
3 [Cu(Me,bpy),]**/[Cu(Me,bpy),]" 14.4 £0.2 1048 £ 7 68.1 £ 0.5 10.3 £ 0.1
4 [Cu(Me,bpy),]**/[Cu(Me,bpy),]* 14.15 1070 68.7 10.0

5 [Cu(Me,bpy),]**/[Cu(Me,bpy),] 15.53 1040 64.0 10.3

6 [Cu(Me,phen),]*"/[Cu(Me,phen),]* 13.61 1060 69.2 10.3

¢ ff = fill factor.

of the associated increase in values of V. The use of TBP is not
confined to use with I;"/I". However, its role in electrolytes
using Cu®*/Cu” couples poses particular problems because of
the possibility for coordination of TBP to copper and the asso-
ciated consequences on the electrochemical behaviour of the
redox mediator. The results of investigations of the interactions
of TBP and other Lewis bases with [Cu(N"N),]*" species have
resulted in a rather complicated picture, although the under-
lying message is that TBP is a coordinatively non-innocent
additive to DSC electrolytes.

In an investigation of the effects of the Lewis bases TBP, 2,6-
bis(tert-butyl)pyridine, 4-methoxypyridine and 4-(5-nonyl)pyri-
dine, Hagfeldt and coworkers concluded that the optimization of
the pyridine base used in DSC electrolytes containing a copper-
based redox shuttle depended upon a balance of basicity and
coordination capacity.*® In 2016, Saygili et al. pointed to possible
changes in the copper(u) coordination sphere, especially for
[Cu(Me,bpy),]*" and [Cu(Me,bpy),]**, that could be caused by
both TBP and [TFSI|"."** Hupp and coworkers found that when
a [Cu(PDTO)**/[Cu(PDTO)]" redox couple (PDTO, see Scheme 6)
was used in the presence of TBP in a DSC electrolyte, TBP ligands
displaced the tetradentate PDTO in the oxidized form of the redox
mediator. They were able to isolate single crystals of trans-
[Cu(TBP),(CF;S05),] (Fig. 4) from a CH,Cl, solution of
[Cu(PDTO)][CF;S0;], containing a 10-fold excess of TBP. Hupp
proposed that in a MeCN-based electrolyte, likely copper(n)
species would be 4-, 5- or 6-coordinate [Cu(TBP),,,(NCMe),]*"
ions with the fifth or sixth coordination site occupied by MeCN or
TBP ligands.* In 2018, Wang and Hamman proposed that TBP
could displace ligands such as Me,bpy (Scheme 6) to give
[Cu(TBP),J*" in MeCN solution. In the electrolyte in a DSC which
initially contains [Cu(Me,bpy),]>*/[Cu(Me,bpy),]" redox mediator,
it was proposed that when TBP is in sufficient excess,
[Cu(TBP),]**/[Cu(Me,bpy),] is the pertinent redox species. Since
[Cu(TBP),]*" is a poor electron acceptor, recombination is
reduced which contributes to enhanced Jsc and Vo' In
contrast, Saygili et al. favoured a 5-coordinate complex (based
upon density functional theory calculations) in which one mole-
cule of TBP adds to the [Cu(N"N),J*" species. This results in
different charge recombination kinetics, but nonetheless, the
recombination resistance and electron lifetime values were
higher for copper-based than for cobalt-based redox mediators."®

Yeh, Wei and coworkers focused on the interactions of
MeCN (a common electrolyte solvent) and TBP with

© 2022 The Author(s). Published by the Royal Society of Chemistry

components of the [Cu(Me,phen),]**/[Cu(Me,phen),]" redox
mediator.'"” Firstly, they demonstrated the formation of the 5-
coordinate complex [Cu(Me,phen),(NCMe)]** in MeCN solu-
tions containing [Cu(Me,phen),]**, and this is consistent with
the report of Kloo and coworkers that crystals of [Cu(Me,-
phen),(NCMe)][ClO,], (Fig. 4b) grow from an MeCN solution of
[Cu(Me,phen),|[ClO,4],.*** Yeh, Wei and coworkers further
showed that the addition of 15 equivalents of TBP (i.e. repli-
cating the [Cu(Me,phen),]>" : TBP ratio in a typical DSC elec-
trolyte) resulted in coordination of TBP to the Cu(u) centre.
From absorption spectroscopic data, they concluded that the
species present was [Cu(Me,phen),(TBP)(NCMe),]** where x =
0 or 1. This investigation confirmed a negative shift in the redox
potential compared to that of pristine [Cu(Me,phen),]*"/
[Cu(Me,phen),]". Additionally, the performance of DSCs over
a 46 day period suffered from a significant decrease in the fill-
factor which has its origins in reduced charge transfer at the
counter electrode and slow mass transport associated with the
sterically demanding [Cu(Me,phen),(TBP)(NCMe),]* cations.*"”

The pros and cons of using TBP as an additive continue to be
debated. Recently, Fiirer et al. presented a detailed investigation
that confirms the critical benefits of adding strong Lewis bases
such as TBP or 1-methylbenzimidazole (NMBI) to the electro-
Iyte, but importantly, these results distinguish between the
formation of 5-coordinate complexes [Cu(Me,phen),(LB)]** (LB
= Lewis base) and ligand exchange to give [Cu(LB)4]*". The latter
is exemplified with the redox mediator [Cu(Ph,phen),]*"/

Y% D g
o
)’ -
‘( = —
s g —= N
(a) (b) (c)

Fig.4 The structures of (a) trans-[Cu(TBP)4(OsSCFs),] (CSD*2° refcode
IPEWAD), (b) the [Cu(Me,phen),(NCMe)]?* cation in the perchlorate
salt (CSD refcode XIDWEP), and (c) the [Cu(Me,phen),(TBP)]?* cation
from the structure of the TFSI™ salt; the cif was kindly provided by the
authors of ref. 119. Hydrogen atoms are omitted for clarity. As a general
note, 3D-structures in this review have been drawn using coordinates
retrieved from the Cambridge Structural Database (CSD, version
2021.2.0)*** and using Mercury version 2021.2.0.122
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[Cu(Ph,phen),]" (Ph,phen, see Scheme 6). Crystallographic data
confirm the formation of [Cu(Me,phen),(TBP)][TFSI], (Fig. 4c).
Fiirer et al. conclude that NMBI is a better additive than TBP in
DSCs sensitized with Y123 (Scheme 4) and containing the
[Cu(Me,phen),]**/[Cu(Me,phen),]" redox shuttle. The Lewis
base additive is essential for the best-performing DSCs (Jsc >
1100 mV), but at the same time, careful choice of Lewis base to
optimize coordination rather than ligand exchange at copper(u)
is critical. The formation of [Cu(LB),]*" has a detrimental effect
on the regeneration of the reduced form of the redox mediator
at the counter electrode (Scheme 7) and, therefore, limits the
current output of the DSC.**®

With the aim of sterically protecting the copper centre from
attack by a Lewis base and, at the same time, increasing the
stabilities of the Cu(1) and Cu(u) species, Sun and coworkers
designed the [Cu(tpe)]**/[Cu(tpe)]" and [Cu(tme)]**/[Cu(tme)]*
redox mediators in which tpe and tme are pentadentate ligands
(Scheme 8).*>* These are closely related to the tetradentate
ligands dbdpe and dbdpme (Scheme 8) which had previously
proved promising in [CuL]**/[CuL]" (L = dbdpe or dbdpme)
redox mediators when combined in DSCs with the dye Y123."**
Rodrigues et al. have also explored the use of tetradentate
ligands in Cu**/Cu® redox shuttles where a rigid ligand back-
bone was found to lead to more efficient electron transfer and to
enhanced Jgc values.'” Returning to the [Cu(tpe)]**/[Cu(tpe)]"
and [Cu(tme)]**/[Cu(tme)]" couples, the presence of the methyl
substituents in the ligand tme results in a higher oxidation
potential for [Cu(tme)]" (+0.52 V vs. NHE) than for [Cu(tpe)]*
(+0.10 V). The crystal structures of [Cu(tpe)][PFs], and [Cu(tme)]
[PFs], were determined, and in the latter, the Cu-N bond
lengths are longer (1.990(4)-2.262(4) A) than in the former
(1.969(2)-2.113(2) A). In DSCs sensitized with dye Y123 (Scheme
4) and containing PEDOT (PEDOT = poly(3,4-
ethylenedioxythiophene)), use of the [Cu(tme)]**/[Cu(tme)]
redox mediator resulted in values for the best-performing cells

TBP 2+ e~ from
counter
S = electrode
/Nl"C UES
u
TBP =SNY T INTS
N—, - ~=
o4 TBP +
[ } o
[ | =N, | Nx
™ Cu NS = N'CU‘N =
=N INT = e
S _
+
| X
-
2N RS
Cu
Dye = lN/ 'NI :
TBP

Dye*

Scheme 7 Representation of the involvement of a strong Lewis base
such as TBP in the redox cycle of the [Cu(Me,phen),]>*/[Cu(Me,-
phen),]* mediator. Based on a scheme from the work of Bach and
coworkers.**®
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Scheme 8 Structures of the pentatdentate ligands tpe and tme and
the related tetradentate ligand dbdpe, the bidentate ligands npbi and
nbpbi, and a bpy-based ligand dbpy designed to form a double
stranded copper() helicate.

of Jsc = 15.9 mA ecm ™2, Vo = 840 mV and 7 = 9.4% when the
device was irradiated under a light intensity of 1000 W m 2.
Corresponding values for cells with [Cu(tpe)]**/[Cu(tpe)]” were
Jsc = 6.6 MA cm ™2, Voe = 510 mV and 7 = 2.1%, with the much
lower Vo being consistent with the difference in redox poten-
tials (see above). The stability of the system is evidenced by the
fact that DSCs containing [Cu(tme)]**/[Cu(tme)]" maintained
>90% of their initial PCE after 400 hours of continuous
illumination.

An alternative approach to overcome the detrimental effects
of TBP is to develop TBP-free electrolytes. One interesting
direction has been to design double-stranded helical dicopper
complexes with a redox process based upon equilibria (1)-(4);
the relative importance of each equilibrium depends upon the
ligand, L. With L = dbpy (Scheme 8), the highest PCE achieved
for DSCs sensitized with Y123 (Scheme 4) was ca. 8%, suggest-
ing that the use of these dinuclear species is a promising way
forward.***

123

[Cu'L]" = [Cu"LP* + e (1)
[CulL,]** = [Cu'CuL,** + e~ (2)
[Cu'Cu"L,** = [CulLy)*" + e~ (3)

[CUL," = [Cud'Lo]* + 2™ (4)

Cu”*/Cu” redox mediators: from metal-free to ruthenium(i)
dyes

Over the 2020-2021 period, the number of publications
focusing on DSCs which combine organic or zinc(u) porphyrin
dyes with Cu®*/Cu’ redox shuttles has increased signifi-
cantly,” " with some record breaking DSC performances

© 2022 The Author(s). Published by the Royal Society of Chemistry
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originating in extremely high V¢ values. Colombo et al. recently
reviewed the field."** A particularly striking example is the
realization of a V¢ value of 1240 mV for a DSC containing the
dye MS5 (Scheme 9) and the [Cu(Me;bpy),]*"/[Cu(Me,bpy),]"
redox shuttle. The absorption maximum of MS5 in the visible
range lies between ca. 420 and 540 nm, and in order to extend
this towards to red, DSCs co-sensitized with MS5 and XY1b
(Scheme 9) were investigated. Table 2 summarizes data for DSCs
with MS5, XY1b and a combination of the two dyes, all with the
[Cu(Me,bpy),]**/[Cu(Me,bpy),]” redox shuttle. Under ambient
lighting, the co-sensitized DSC reached a record-breaking
34.5% photoconversion efficiency.*”

Compatibility between ruthenium(n) dyes and Cu®**/Cu®
redox couples in order to achieve high photoconversion effi-
ciencies remains a challenge. Shanmugan and coworkers
recently reported the performances of DSCs containing N719
or N3 (Schemes 2 and 5) and [Cu(nbpbi),]**/[Cu(nbpbi),]" (E°
= +0.68 V vs. NHE) or [Cu(npbi),**/[Cu(npbi),]" (E° = +0.61V
vs. NHE) in MeCN with TBP as an additive (see Scheme 8 for
the ligand structures). Analogous DSCs containing
[Co(nbpbi);]**/[Cu(nbpbi);** or [Co(npbi);]**/[Cu(npbi);]**
were also fabricated. In keeping with the more positive redox
potentials of the copper-containing redox mediators, DSCs
with the latter out-performed those with the cobalt-based
couples. Table 3 displays DSC parameters for cells with
[Cu(nbpbi),]**/[Cu(nbpbi),]* and [Cu(npbi),]**/[Cu(npbi),]",
and these DSCs represent state-of-the-art combinations of
ruthenium(u) dyes and copper-based redox mediators. Factors
contributing to the performances include relatively long
electron lifetimes, slow recombination processes and rapid
dye regeneration. However, the relatively low ff values in Table
3 are noteworthy."*®

nC‘2H250\©O"C‘2H25 C12Ha50. O O"CyHps
T3

XY1b

Scheme 9 Structures of the metal-free dyes MS5 and XY1b.
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Table 2 DSC (masked) performances using MS5, XY1b and a combi-
nation of the two dyes (under a light intensity of 1000 W m~2) with the
[Cu(Me,4bpy),12*/[Cu(Me4bpy),l™ redox shuttle?™”

Dye Jsc/mAcm™?  Voo/mV /% /%

MS5 8.87 + 0.21 1240 + 3 73.3 £ 0.4 8.0 + 0.3
XY1b 15.26 + 0.18 1010 + 3 76.3 £ 0.2 11.8 £ 0.2
Co-sensitized 15.84 + 0.24 1050 + 2 81.3 £ 0.2 13.5 +£ 0.2

Table 3 DSC (masked) performances using dyes N719 and N3 (under
a light intensity of 1000 W m~2) from the work of Shanmugan and
coworkers.**® The electrolytes contained TBP

Redox couple Dye Jsc/mA em™? Voo/mV ff/% 1/%
[Cu(nbpbi),]**/[Cu(nbpbi),]* N719 14.3 760 44 4.82
[Cu(nbpbi),]**/[Cu(nbpbi),]* N3  14.5 690 49 4.99
[Cu(npbi),]**/[Cu(npbi),]*  N719 8.8 750 48  3.19
[Cu(npbi),]**/[Cu(npbi),]" N3 8.8 740 50 3.26

Other first row M"*/M™* redox
mediators

While Co®*/Co®" and Cu®*/Cu’ redox couples have been inves-
tigated in detail as alternatives to I3 /I, the first row of the d-
block offers a number of other redox-active metals among
which V, Mn, Fe and Ni have received some attention.

V03+/V02+

Vanadium-based redox mediators have not often been
employed in DSCs, but some rather promising results have been
reported using oxidovanadium(v/wv) species. The first example
from Oyaizu et al. in 2013 was motivated in part by the high
solubility of [VO(salen)] (see Scheme 10 for Hysalen) in MeCN.
To generate the [VO(salen)]'/[VO(salen)] redox mediator, the
oxidized form was prepared by aerobic oxidation of [VO(salen)]
in the presence of CF;SO;H to give [VO(salen)(O;SCF;)]. The
single crystal structure of the latter confirms a 6-coordinate
vanadium(v) complex. The redox potential for the [VO(salen)]"/
[VO(salen)] couple (+0.64 V vs. Ag/AgCl) is ca. 0.3 V more positive
than that of I;7/I". DSCs combining the dyes D131 and D205
(Scheme 11) with [VO(salen)]"/[VO(salen)] as the redox mediator
were fabricated with and without the co-adsorbent cheno. The
value of E,.qox and fast electron transfer kinetics contributed to
the promising performance of the DSCs. In the presence of
cheno to suppress recombination processes, values of Jsc = 12.3
mA cm™?, Voc = 740 mV, ff = 59% and 7 = 5.4% were
realized.**

In 2015, Apostolopoulou et al. reported the use of the
[VO(hybeb)] /[VO(hybeb)]*~ redox shuttle (for Hihybeb, see
Scheme 10), with the complexes present as [PPh,]" salts.
Preliminary experimental and computational studies revealed
that the complexes exhibited high rates of electron exchange
and transfer, and that the values of E..40x and the ground state
energy level of the dye N719 are well matched for dye regener-
ation. After optimization of the initial concentrations of [Ph,P]
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Scheme 10 Structures of the conjugate acids of the tetradentate
ligands [salen]?>~ and [hybeb]*~.
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Scheme 11 Structures of the commercially available dyes D131 and
D205, and of the metal-free dyes MK2 and K4.

[VO(hybeb)] and [Ph,P],[VO(hybeb)], the best performing DSC
under illumination of 1000 W m ™2 achieved a PCE of 2%, with
cell parameters of Jsc = 5.2 mA cm™ 2, Voo = 660 mV, ff =
58%.'°

While vanadium-based redox mediators have gained
minimal attention, the results that are available in the literature
demonstrate promise. However, to the best of our knowledge,
the long-term stability of these electrolyte components remains
untested.

Mn**/Mn®** and Mn**/Mn**

The range of oxidation states offered by manganese makes it an
attractive target for use in redox mediators. In addition, it is
abundant in the Earth's crust (ca. 950 ppm)*” and has a low
toxicity. The first application in DSCs came from Spiccia and
coworkers who employed the [Mn(acac);]/[Mn(acac),] (Hacac =
pentane-2,4-dione) couple in devices sensitized with the ruth-
enium(n) dye N719 or the organic dyes MK2 and K4 (Scheme
11). Different fabrications of counter electrode were tested:
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thermally decomposed Pt/FTO, sputter-coated Pt/FTO, sputter-
coated Au/FTO and PEDOT/FTO. PEDOT/FTO electrodes were
found to be most compatible with the [Mn(acac);]"/[Mn(acac);]
redox shuttle. The composition of the electrolyte was optimized
to an MeCN solution containing [Mn(acac);] (0.50 M), NOBF,
(0.10 M), TBP (1.20 M), LiBF, (0.05 M) and cheno (0.01 M). Note
that the co-adsorbent cheno was added to the electrolyte rather
than the dye bath; compare this with, for example, the use of
cheno with copper(l) and iron(u) dyes discussed in later
sections. Under a light intensity of 1000 W m 2, values of 7 for
DSCs sensitized with N719, MK2 and K4 were 4.4 + 0.2%, 4.4 +
0.2% and 3.9 + 0.1%, respectively. The three dyes produced
values of Jsc in the range 7.8-8.6 mA cm ™2, and values of Voc in
the range 733-771 mV. Good fill-factors (69-73%) contributed
to respectable DSC performances. Although the results
confirmed the compatibility of the [Mn(acac);]'/[Mn(acac)s]
redox mediator with both ruthenium(u) and organic dyes, the
electron lifetimes of these DSCs were shorter than those for
analogous cells containing I;7/I” and [Co(bpy)s]**/[Co(bpy)s]**
redox shuttles. This reveals faster electron recombination at the
photoanode for the [Mn(acac);]"/[Mn(acac);] couple leading to
lower PCEs."** Carli et al. investigated the use of other [Mn(p-
diketonate);]"/[Mn(B-diketonate);] redox mediators. Their
results demonstrated that although TBP is a critical additive to
the electrolyte to suppress charge recombination, the manga-
nese complexes are unstable with respect to ligand exchange
with TBP.#>143

A series of octahedral [M(bdmpza),][BF,] and [M(bdmpza),]
complexes in which M = Mn, Fe and Co, and Hbdmpza is the
heteroscorpionate ligand shown in Fig. 5 has also been
screened for use in redox mediators. The structure of the
[Mn(bdmpza),]" cation is shown in Fig. 5a. Although electro-
chemical properties of the complexes appeared promising, the
solubilities of the Mn(u) compounds were low in polar
solvents.™* We return to the iron complexes in the next section.

Before closing this section of manganese-based redox
mediators, we note that [Mn(HBpz;),]"/[Mn(HBpzs),] ((HBpzs]
= hydridotris(pyrazolyl)borate) and several alkylated derivatives
have been applied as redox mediators in quantum dot solar
cells.*®®

CO.H

{

\q

(a) (b)

7NN

b /

Hbdmpza -

Fig. 5 The conjugate acid of the heteroscorpionate ligand [bdmpza] ™~
and the structures of (a) the manganese(i) complex [Mn(bdmpza),]*
(CSD refcode ITEQOP) and (b) the iron(n) complex [Fe(odmpza),|*
(refcode ITEQEF) both in the [BF4] ™ salts.
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Fe3+/Fe2+

With its high natural abundance (ca. 41 000 ppm of the Earth's
crust)*” and redox active properties, iron is the dream metal
upon which to base DSC redox mediators in addition to DSC
sensitizers (see later). An overview of Fe**/Fe*" redox couples in
DSCs was given by Pashaei et al. in 2015.”* The ferrocenium/
ferrocene (Cp,Fe'/Cp,Fe, E° = +0.62 V vs. NHE) couple is
a standard reference redox couple in non-aqueous solvents,
but in a DSC, it was found to suffer from rapid recombination of
electrons from the semiconductor.”” One approach to sup-
pressing this pathway is to passivate the TiO, surface.*® For
example, surface treatment with MeSiCl; produces a blocking
layer of poly(methylsiloxane) and leads to an improvement, but
this is offset by slower regeneration of the oxidized dye.'*
Remarkable progress with the Cp,Fe'/Cp,Fe redox shuttle was
made by Bach, Spiccia and coworkers in 2011. They demon-
strated that DSCs sensitized with the organic dye Carbz-
PAHTDTT (Scheme 12) and containing an electrolyte
comprising Cp,Fe'/Cp,Fe and TBP in MeCN, attained PCEs of
up to 7.5%. The dye was selected because of its light absorption
over a wide visible-wavelength range; best performances are
gained with thin TiO, electrodes. The data in Table 4 illustrate
the effects of adding the co-adsorbent cheno, and compare the
use of Cp,Fe’/Cp,Fe with the standard I; /I redox mediator.'>
Exclusion of O, from the DSCs is essential when the Cp,Fe’/
Cp,Fe couple is employed, and this makes cell fabrication less
convenient than with many other redox mediators. Just as the
redox potentials of the Co®>"/Co®" and Cu>*/Cu” couples can be
tuned by choice of ligand (see earlier), an advantage of the
Cp,Fe'/Cp,Fe couple is that the redox potential can readily be
shifted to higher or lower potentials through functionalization
of the cyclopentadienyl rings.

Tris(2,2'-bipyridine)iron(m)/(n) based couples have been
investigated both as redox mediators and co-mediators, the
[Fe(bpy)s]*'/[Fe(bpy)s]*" couple being readily reversible and
stable with respect to ligand dissociation. In 2010, Caramori,
Gros and coworkers demonstrated the use of [Fe(4,4-
Me,bpy)s]**/[Fe(4,4'-Me,bpy);* and [Fe(4,4'-(MeO),bpy)s**/
[Fe(4,4'-(MeO),bpy);]** redox co-mediators in conjunction with
[Co(4,4'-Bu,bpy)s]**/[Co(4,4'-'Bu,bpy);]**. Compared to DSCs
using only the cobalt-based redox mediator, the electron-
collection efficiency of a DSC sensitized with the ruthenium
complex [Ru(tpyCO,H)(ttpy)][PFs), (Scheme 12) was enhanced
when [Fe(4,4'-Me,bpy);]>*/[Fe(4,4'-Me,bpy);]** was added as a co-
mediator. The improvement has its origins in electron-transfer
between the Co**/Co®" and Fe*'/Fe** couples which creates an
electron cascade between oxidized dye, electron co-mediator and
electron mediator."* As Fig. 2a and 3 illustrated, high values of
Voc are achieved by careful tuning of E,.qox, and by judicious
matching of dye and redox couple energy levels. Earlier, we
described the efficient combination of [Co(bpy)s]**/[Co(bpy)s]**
with the donor-m-bridge-acceptor triphenylamine dye D35
(Scheme 4).%° Starting with D35, Delcamp and coworkers'
designed dye RR9 (Scheme 12) to be energetically compatible
with the [Fe(bpy)s]**/[Fe(bpy);]>" redox mediator. Note that the
arylamine group in D35 was replaced by an aryl-centred unit in
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[Ru(tpyCO,H)(ttpy)I[PFgla

Carbz-PAHTDTT

COH
Ruthenizer-505 RR9

Scheme 12 Structures of the metal-free dyes Carbz-PAHTDTT and
RR9, and the ruthenium(i) dyes [Rul(tpyCO,H)(ttpy)l[PF¢l, (tpy =
2,2':6' 2" -terpyridine) and the commercially available Ruthenizer-505.

RR9 to achieve a lower energy ground-state oxidation potential.
Upon going from a combination of D35 and [Co(bpy)s]**/
[Co(bpy)s]** to RR9 and [Fe(bpy);]**/[Fe(bpy)s]**, the maximum
theoretical increase in Vo is 810 mV. In practice, DSCs with
these dye-redox couple combinations achieved values (average
for two cells) of V¢ of 760 and 1420 mV, respectively. TiO, layer
thickness (2.7 pm) proved critical. For masked DSCs with RR9
and [Fe(bpy)s]**/[Fe(bpy)s]**, average values of Jsc = 2.8 mA
em 2, ff = 47%, and 7 = 1.9% were reported. This work is also of
note for the fabrication of sequential series multijunction (SSM)-

Table 4 DSC performances using dye Carbz-PAHTDTT (under a light
intensity of 1000 W m™2) from the work of Bach, Spiccia and
coworkers.**® The electrolytes contained TBP. DSCs do not appear to
be masked

Redox couple  Co-adsorbent Jsc/mA em™? Voo/mV  ff/%  5/%
Cp,Fe'/Cp,Fe  cheno 12.2 842 73 7.5
Cp,Fe'/Cp,Fe  — 9.6 815 75 5.9
I;7 /17 cheno 12.3 742 67 6.1
I /1T — 13.3 735 62 6.1
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DSCs based upon RR9 and [Fe(bpy)s]**/[Fe(bpy)s]** which
attained single-illuminated-area voltages of 3.34 V from a three-
subcell system."*

Potentials for redox mediators based on [Fe(bpy);]**/
[Fe(bpy)s]** can be adjusted through ligand functionalization.
Another approach is to move to couples based on [Fe(tpy),]**/
[Fe(tpy).]*" and its derivatives. An example comes from the work
of Kozyukhin et al. in which DSCs containing the commercial
dye Ruthenizer-505 (Scheme 12) and the redox mediator
[Fe(pytpy).]®'/Fe(pytpy)o]”" (pytpy = 4'-(pyridin-4-yl)}-2,2":6',2"-
terpyridine) were tested under illumination of 1000 W m ™2, and
compared with analogous DSCs using an I3 /I" redox shuttle.
The J-V characteristics of the Fe-based electrolyte were notably
poorer than those with I;7/I", and this was explained in terms
of the slower reduction kinetics of the oxidized dye for the
[Fe(pytpy).]*"/Fe(pytpy).]*" mediator.'*

Although there has been progress with the use of Cp,Fe'/
Cp,Fe and [Fe(bpy)s]*"/[Fe(bpy);]**-based redox couples in
DSCs, there is significant scope for further exploration and
improvements. Among the other classes of iron complexes
considered for potential redox mediators are those with scor-
pionate ligands, i.e. tridentate (tripodal) ligands which lead to
metal complexes with high stability constants. Such ligands are
preorganized to bind to a metal ion in a fac-mode, as in
[Fe(bdmpza),]" (Fig. 5b). Burzlaff and coworkers reported that
[Fe(bdmpza),][BF,] exhibits a reversible (iron-centered) redox
process at +0.46 V vs. NHE. Despite the redox potential
comparing favourably with that of the I;7/I" couple, the solu-
bilities of the iron complexes in solvents typically used in DSCs
were too low for practical applications.'** This underlines one of
the difficulties of pinpointing appropriate redox mediators for
DSCs. While out of the main remit of this review, it is pertinent
to note that the [Fe(acac);]/[Fe(acac);]” redox mediator has been
successfully developed for use in p-type DSCs.***

Ni**/Ni**

Nickel(v)/(m1) bis(dicarbollide) complexes show high thermal
stability, are non-corrosive and interconvert reversibly (Fig. 6a)

B, B,
0| e oL
O 1K
c/;- '.Bx~ ;\B c/ ’B\ B
c@a °= ¢ 8"
Ve b el
AA - IRA
N N
Ni(IV) N
(a) (b)
Fig. 6 (a) The nickel(v)/(m) bis(dicarbollide), [Ni(C5BgH11)5]1/[Ni(C,Bo-

Hi1)217, redox couple, and (b) the structure of the nickel(v) complex
[Ni(C2BgH10Ph),] (CSD refcode HABQEI).
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making them suitable candidates for redox mediators in
DSCs,*** with redox potentials tuned by introducing electron-
donating or withdrawing substituents. Hupp and coworkers
fabricated DSCs sensitized with N719 and incorporating elec-
trolytes comprising [Ni(C,BgH;0R),] (R = Ph, 4-MeC¢H,, 4-
MeOCgH,, 4-CIC¢H,, 4-CF3C¢H,, 3,5-(CF3),CeHj3), [Ni(CyBoH, o
R),]| ", [Bu,N][BF,] and TBP in dichloroethane. Values of V¢ in
the range 640-740 mV were observed which could be enhanced
by atomic layer deposition of Al,O; (ca. 1.1 A) on the TiO,
surface of the photoanode.'*® There appears to have been no
further development of this type of Ni-based redox mediator.

First row d-block metals: from redox
mediators to dyes

So far, we have focused on the highly promising approaches to
replacing the I;”/I" redox couple by mediators based upon first
row d-block metals, in particular cobalt and copper. As we have
discussed, some outstanding photoconversion efficiencies have
been achieved using Co**/Co”>" or Cu®'/Cu” couples and metal-
free or zinc(u) porphyrin dyes. Nonetheless, the synthetic
complexity associated with many state-of-the-art organic dyes is
a disadvantage for upscaling for commercial applications. In
contrast, first row d-block metal coordination compounds
containing synthetically-accessible ligands and which absorb in
the visible region are readily prepared. Complexes of copper(i)
and iron(u) are especially promising candidates for use as
sensitizers in DSCs.

In the next part of this review, we turn our attention from
redox couples to sensitizers. We have excluded zinc(u) porphyrin
and zinc(n) phthalocyanine dyes because progress in this exten-
sive field has been thoroughly reviewed,”®3036:46:48,33-55,157,158 gnd
references within the following selected papers also serve to
access the relevant literature.******'”* More generally, the use of
Earth abundant metals in DSCs has been reviewed by Forster and
Heinze in 2020."”* Our last general review in this area covered the
literature up to 2012 *”* and therefore the main emphasis in the
current article is on developments in the last decade.

The most readily achieved goal.:
copper-based sensitizers in DSCs
From ruthenium(u) to copper(i)

State-of-the-art ruthenium(u) dyes are usually based upon an
{Ru(bpy)s}** or {Ru(bpy),(NCS),} core. The development of
copper(1) dyes which typically incorporate a {Cu(diimine),}" core
(diimine = bpy or phen) follows from similarities between their
photophysical behaviour and those of [Ru(diimine);]**
complexes.””*'’*  Simple (e.g [BF4], [PFe] ) salts of
[Ru(diimine);]*" and [Cu(diimine),]" species are usually orange
or orange-red with absorption maxima in the range 400-
550 nm. A notable distinction between them, however, is that
molar extinction coefficients of [Cu(diimine),]" complexes are
lower (ca. 5000 M~' ecm™") than those of [Ru(diimine);]**
complexes (ca. 15000 M~ cm™'). As we exemplify later, this
disadvantage of the copper(i) species can be addressed by

© 2022 The Author(s). Published by the Royal Society of Chemistry
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appropriate functionalization of the diimine metal-binding
domain.

The excited states of both [Ru(diimine);]** and
[Cu(diimine),]" complexes are mainly metal-to-ligand charge-
transfer (MLCT) in character, and arise from the excitation of
an electron from metal d-orbitals to antibonding 7*-orbitals
localized on the diimine ligand. There is, however, a significant
difference between the ruthenium(u) and copper(1) compounds.
Upon excitation of an octahedral [Ru(diimine);]** (d°) species,
there is negligible change in the equilibrium geometry as the
metal formally undergoes oxidation from Ru(u) to Ru(m). A d*°
[Cu(diimine),]" complex is tetrahedral (or distorted tetrahedral)
and the excited MLCT state is formally a d° copper(u) species for
which a tetragonal arrangement of donor atoms is preferred.
Excitation is therefore accompanied by a flattening of the
copper coordination sphere and, unless this is mitigated
through steric effects (see later), solvent interactions with the
Cu(u) metal centre result in shortening of the excited-state
lifetime.

Another important difference between [Ru(diimine);]*" and
[Cu(diimine),]" complexes is the lability of the ligands. The d®
configuration of ruthenium(n) leads to a kinetically inert metal
centre. In contrast, the d'° configuration of copper(i) results in
labile ligands which undergo rapid exchange. Thus, for
example, the '"H NMR spectrum of a 1 : 1 mixture of [Cu(6,6'-
Me,bpy),][PFs] and [Cu(2,9-Me,phen),][PF¢] in CD;CN exhibits
four signals assigned to the methyl groups arising from
a1:2:1 statistical mixture of [Cu(6,6'-Me,bpy),][PFs], [Cu(6,6'-
Me,bpy)(2,9-Me,phen)|[PFs] and [Cu(2,9-Me,phen),][PFs]."””
Ligand lability is a key issue that has been addressed by the
‘surfaces-as-ligands, surfaces-as-complexes’ (SALSAC)'”® and the
heteroleptic 1,10-phenanthroline Cu() complexes (HET-
PHEN)"”® approaches which are discussed in detail below.

Development of copper(1) dyes: homoleptic complexes

A number of reviews provide an entry into the area of bis(dii-
mine)copper(i) sensitizers for DSCs.'7#17>18183 [y 1994, Sauvage
and coworkers were the first to demonstrate the combination of
a homoleptic copper(i) complex as a dye with a wide-band-gap
semiconductor for photoconversion.'® A number of features
of their dye (Scheme 13) are relevant for an understanding of the
design of ligands for bis(diimine)copper(1) sensitizers. Firstly,
the choice of phen rather than bpy is advantageous because the
phen metal-binding domain is preorganized for coordination
whereas bpy requires a conformation change from s-trans to s-
cis (Scheme 13). Consequently, [Cu(phen),]"-based complexes
possess stability constants which are typically one or two log K
units greater than analogous [Cu(bpy),]" complexes. On the
other hand, this has to be offset against the fact that a greater
range of functionalized bpy ligands is synthetically accessible
than functionalized phen ligands. The second feature of the
copper(i) complex shown in Scheme 13 is the presence in the
phen ligands of sterically demanding 2,9-substituents to
prevent flattening of the copper coordination sphere upon
excitation (see above). Thirdly, the carboxylate units are intro-
duced to act as anchoring domains to attach the dye to the
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Scheme 13 The sensitizer designed by Sauvage and coworkers, and
the preorganized nature of the phen metal-binding domain compared
to the conformational change required by bpy.

Fig. 7 Structures of ligands 1-3, and the structure of [Cu(3),]" in the
[PFel™ salt (CSD refcode JOHXIO). The space-filling representation is
used to emphasize the protection imparted by the 6- and 6’-methyl
groups.

semiconductor surface. From this milestone report, little
progress was made'®® until 2008 when we, in collaboration with
Gritzel, demonstrated photoconversion efficiencies of 1.9 and
2.3%, respectively, for masked DSCs sensitized with [Cu(1),]
[PF¢] and [Cu(2),][PFs] (see Fig. 7 for ligand structures) and
using an I3~ /I redox mediator. These values of 1 compared to
a value of n = 9.7% for a reference cell sensitized with the
ruthenium(u) dye N719. Structural data for the related ester
[Cu(3),][PFs] (Fig. 7) illustrated that the 6- and 6'-methyl groups
are sufficiently large to protect the Cu() centre.®®

Note that while dyes with alkyl ester functionalities may bind
to TiO, as a result of hydrolysis to the corresponding carboxylic
acid,'® use of the ester-protected anchoring domains is usually
detrimental to DSC performance.' In order to overcome this
problem, Soo and coworkers pre-treated the TiO,-electrodes
with a THF solution of KO‘Bu for two days. Attachment of
[Cu(4),]" was then possible through reaction of the ester groups
in 4 (Scheme 14) with the ac