Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications
Abstract
Nanostructured conducting polymers (NCPs) have been extensively studied and widely applied in state-of-the-art technologies over the past few decades because they simultaneously offer the photoelectric features and processing advantages of polymeric conductors and the nano-size effect of nanomaterials. With rational design and synthesis, NCPs with controllable morphologies and physicochemical properties can exhibit fascinating electrical, optical, mechanical, and biological properties. In this review, we describe in detail the synthetic methodology and the relationship of morphology–property of NCPs as well as their recent advances in biotherapy, biosensing, microwave absorbers for electromagnetic shielding, and various energy storage/conversion/saving devices. And last, since this field contains many immense scopes for exploration and development, we bring new insights along with a brief summary.
- This article is part of the themed collection: Journal of Materials Chemistry C Recent Review Articles