A dehydrobenzoannulene-based two-dimensional covalent organic framework as an anode material for lithium-ion batteries†
Abstract
Developing anode materials with excellent cycling performance and energy capacities for lithium-ion batteries (LIBs) is a challenging task. Herein, we report the synthesis of an imine-linked covalent organic framework (COF) containing redox-active dehydrobenzoannulene (DBA) units. The bulk DBA-COF 3 system exhibits a reversible capacity of 207 mA h g−1 at 50 mA g−1 after 90 cycles. This work highlights the potential of utilizing DBA units to construct efficient organic-based anode materials for LIBs.
- This article is part of the themed collection: MSDE Emerging Investigators 2020