Hybrid PEDOT/MnOx nanostructured electrocatalysts for oxygen reduction†
Abstract
A series of hybrid poly(3,4-ethylenedioxythiophene)/manganese oxide (PEDOT/MnOx) thin films have been prepared via a stepwise approach: electrodeposition of PEDOT, followed by formation of MnOx particles by a spontaneous redox reaction between PEDOT and KMnO4. Electrocatalytic characterization of the PEDOT/MnOx thin films demonstrates high activity toward the oxygen reduction reaction (ORR), with a shift in intrinsic ORR onset and half-wave potentials by ca. 0.2 V to lower overpotential relative to the PEDOT thin film. The most active PEDOT/MnOx thin film electrocatalyst, P-MnOx-20, demonstrates superior activity relative to the commercial 20% Pt/C catalyst in the half-wave region of the ORR potential window at equal mass loading, with a half-wave potential of 0.83 V (20% Pt/C, 0.81 V) and charge transfer resistance of 479 Ω (20% Pt/C, 862 Ω). The P-MnOx-20 film also demonstrates preference to a pseudo-four electron ORR pathway (n = 3.8) and high specific ORR activity, when considered on both a total mass (−96 mA mgtotal−1; 20% Pt/C: −108 mA mgtotal−1) and metal (or metal oxide) mass basis (−296 mA mgMnOx−1; 20% Pt/C: −540 mA mgPt−1). The P-MnOx-20 film has been identified as the most active PEDOT/ceramic composite electrocatalyst reported to date, which is rationalized by the high surface concentration of Mn(III), strong electronic coupling between PEDOT and MnOx, as well as a high active site density and efficiency achieved by the stepwise electrodeposition-redox approach.
- This article is part of the themed collection: Materials Chemistry Frontiers HOT articles for 2017