The effect of Si/Al ratio on the catalytic performance of hierarchical porous ZSM-5 for catalyzing benzene alkylation with methanol†
Abstract
Ethylbenzene is the major side product in benzene alkylation with methanol and it is difficult to be suppressed over hierarchical porous ZSM-5. Moreover, the separation of ethylbenzene from xylene still remains a great challenge. Our research indicated that ethylbenzene formation could be highly suppressed by changing the Si/Al ratio of the catalyst. Hierarchical porous ZSM-5 catalysts with different Si/Al ratios were prepared via reducing the amount of Al in the solvent evaporation assisted dry gel conversion method. In this method, tetra-n-propylammonium hydroxide was used as the direct agent to create micropores, and hexadecyltrimethoxysilane was added to create additional porosities by forming organic assemblies which occupied a certain space between zeolitic walls. The catalyst with a Si/Al ratio of 1800 could achieve high benzene conversion (59.5%) and high xylene selectivity (39.0%) as well as excellent suppression of ethylbenzene formation (<0.1%).
- This article is part of the themed collection: Catalysis on Zeolites