Recent progress on solar blind deep ultraviolet photodetectors based on metal halide perovskites
Abstract
Solar blind deep ultraviolet photodetectors (DUVPDs) are widely used in civil and military fields, such as partial discharge detection, flame detection and missile guidance. In the past decade, traditional wide band gap semiconductors (such as GaN, Ga2O3, and AlN) have been the dominant material for solar blind detection. Furthermore, they have experienced considerable progress with respect to sensitivity, switching ratio and dark current. As a star material in the photoelectric field, metal halide perovskites (MHPs) have led to some excellent works in the field of solar blind detection. However, the existing reviews in the field of solar blind detection are all based on traditional wide band gap semiconductors, and there is no article summarizing the studies on MHP solar blind detection. Therefore, in this article, beginning with the most basic principles and performance characterization of photodetectors, we introduce the research progress and present situation of solar blind detection based on MHPs. The MHPs discussed in this paper mainly include the lead-based perovskite CsPbX3 (X = Cl, Br, or I) and copper-based perovskites CsCu2I3 and Cs3Cu2I5. Furthermore, the manufacturing strategies, and direct and indirect detection processes of DUVPDs are discussed in detail. At the end of the article, we present a brief outlook that examines the challenges and future strategies for solar blind DUVPDs.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and Journal of Materials Chemistry C Emerging Investigators 2024