An equivalent RLC circuit loss mechanism introduced by Fe2O3 nanoneedle arrays towards high-performance electromagnetic wave absorption materials†
Abstract
Previous studies in the direction of electromagnetic wave absorption (EMW) materials have primarily focused on microstructure design, carbon/magnetic dual-phase structure construction and optimizing impedance matching. Despite previous efforts, there still remains a challenge in the introduction of additional EMW attenuation mechanisms. In this work, we fabricate Fe2O3 nanoneedle arrays grafted onto carbon nanofibers (CNFs) to construct equivalent resistive (R), inductive (L), and capacitive (C) structures, thereby introducing an equivalent RLC circuit loss mechanism. The impact of different quantities of surface resonance units on the EMW absorption capability is investigated by adjusting the electrodeposition time. The results reveal that as the number of resonance units per unit area increases, both the resonance strength and bandwidth are significantly enhanced, which brings about a heightened EMW absorption performance. Fe2O3/CNFs-700 exhibits outstanding EMW absorption performance of −54.5 dB at 1.9 mm and an effective absorption bandwidth of 4.3 GHz. These findings not only contribute to the realm of CNF-based EMW materials but also provide valuable insights for enhancing their performance.
- This article is part of the themed collection: Journal of Materials Chemistry C HOT Papers