Contact-electro-catalysis under natural and industrial conditions: mechanisms, strategies, and challenges
Abstract
Contact-electro-catalysis (CEC) is a green catalytic technology that reduces emissions and purifies the environment via contact electrification (CE) at the solid–liquid (S–L) interface to generate reactive oxygen species. However, CEC technology faces limitations under natural and industrial conditions and urgently needs to be developed to promote self-powered or low-cost chemical reactions using environmental energy. A low energy-conversion rate under complex natural or industrial conditions is the key limiting factor for large-scale applications. In this review, CEC under various natural and industrial conditions is discussed. First, the competitive relation between electron transfer and ion transfer in CE is proposed, wherein the CE mechanism details are compared to determine the effect on CEC. Additionally, strategies for promoting S–L electron transfer and controlling ion transfer are systematically analyzed using the condition factors of the solid catalyst, water phase, and external environment, such as functional groups, ions in the liquid, and temperature. Finally, the challenges associated with CEC technology in engineering implementation are summarized. This review aims to provide insight into the competitive relation between electron and ion transfer in S–L CE for CEC and provides new ideas for the engineering of CEC technology under complex natural and industrial conditions.
- This article is part of the themed collection: Journal of Materials Chemistry A Recent Review Articles