Modulating molecular plasmons in naphthalene via intermolecular interactions and strong light–matter coupling†
Abstract
We conducted a theoretical investigation on the modulation of plasmon-like resonances in naphthalene – the so-called molecular plasmons – through intermolecular interactions and strong light–matter coupling. The configuration interaction with single excitations (CIS) approach and its quantum electrodynamics extension (QED-CIS-1) are used to describe the molecular plasmon states under these interactions. We detail the effects of changing intermolecular distances of the naphthalene dimer and incorporating the naphthalene molecule into optical cavities, both allowing for precise control of naphthalene's plasmonic responses. Our results show significant shifts of the plasmon peak in the absorption spectra of naphthalene, depending on the spatial configuration of the dimer and cavity parameters such as polarization, frequency, and coupling strength. Further investigation of the naphthalene dimer in a cavity reveals a synergistic effect on the plasmon peak when the two types of interactions are combined. This research provides insights into the plasmonic behavior of simple polyacenes like naphthalene and opens up possibilities for plasmon modulation in more complex systems.
- This article is part of the themed collection: PCCP 25th Anniversary Issue