Computational design of boron-free triangular molecules with inverted singlet–triplet energy gap†
Abstract
A novel, computationally designed, class of triangular-shape organic molecules with an inverted singlet–triplet (IST) energy gap is investigated with ab initio electronic structure methods. The considered molecular systems are cyclic oligomers and their common feature is electronic conjugation along the molecular rim. Vertical excitation energies from the electronic ground state to the lowest singlet and triplet excited states were computed, as well as vertical emission energies from these states to the ground state. The results underscore the significance of optimizing excited-state geometries to accurately describe the optoelectronic properties of IST molecules, in particular with respect to their application in OLEDs.
- This article is part of the themed collection: PCCP 25th Anniversary Issue