Correlated rotational alignment spectroscopy: a new tool for high-resolution spectroscopy and the analysis of heterogeneous samples
Abstract
Correlated rotational alignment spectroscopy correlates observables of ultrafast gas-phase spectroscopy with high-resolution, broad-band rotational Raman spectra. This article reviews the measurement principle of CRASY, existing implementations for mass-correlated measurements, and the potential for future developments. New spectroscopic capabilities are discussed in detail: signals for individual sample components can be separated even in highly heterogeneous samples. Isotopologue rotational spectra can be observed at natural isotope abundance. Fragmentation channels are readily assigned in molecular and cluster mass spectra. And finally, rotational Raman spectra can be measured with sub-MHz resolution, an improvement of several orders-of-magnitude as compared to preceding experiments.
- This article is part of the themed collection: 2024 PCCP Reviews