Shape-controlled synthesis of one-dimensional cesium lead halide perovskite nanocrystals: methods and advances
Abstract
Metal halide perovskite nanocrystals (MHP NCs) are emerging nanosemiconductor materials that have attracted widespread attention in recent years owing to their advanced optical properties. One-dimensional (1D) CsPbX3 (X = Cl, Br, I) NCs, such as CsPbX3 nanowires (NWs) and nanorods (NRs), are highly anisotropic in shape. They have polarized fluorescence, reduced laser threshold, and improved charge transfer performance, and thus they can be potentially used in liquid crystal displays, optical quantum computers, polarization photodoctors and so on. The fast recrystallization and soft ionic structure of MHP NCs make shape-control synthesis challenging, especially those of 1D shapes. However, many 1D CsPbX3 NC, NWs or NRs have been successfully fabricated in the past several years. In this review, we particularly focus on advances in the synthesis of 1D CsPbX3 NCs. Six solution-based methods for synthesizing 1D CsPbX3, hot-injection method, room-temperature reprecipitation, interfacial chemical transformation, chemical cutting, and self-assembly are summarized and reviewed; additionally, the photophysical properties of these 1D CsPbX3 NCs are discussed. We also summarized key parameters and information on the synthesis, structure, shape, and photophysics of the reported 1D CsPbX3 NCs, and finally a conclusion and an outlook are given.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and Stability of Optoelectronic Materials and Devices