Nano-scale drug delivery systems for luteolin: advancements and applications
Abstract
Luteolin (Lu) is a naturally occurring flavonoid compound with a diverse array of pharmacological activities, including anti-tumor, anti-inflammatory, antibacterial, and neuroprotective properties. However, the therapeutic efficacy and clinical application of Lu are significantly hindered by inherent limitations, such as poor water solubility, short half-life, low bioavailability, and potential off-target toxicity. Recent studies have demonstrated that the utilization of nanocarriers presents a promising strategy to enhance the solubility of Lu, prolong its circulation time, and improve its targeting ability. Despite numerous reviews over the past few decades having focused on the source, pharmacological activities, and molecular mechanisms of Lu, there exists a conspicuous gap in the literature regarding a comprehensive review of Lu-loaded nanoformulations and their applications. To address this gap, we present an exhaustive overview of the advancements and applications of nano-scale drug delivery systems specifically designed for Lu. These platforms encompass micelles, nanocarrier-based systems, emulsified drug delivery systems, and vesicular drug delivery systems. We provide detailed insights into the synthetic materials, preparation methods, physicochemical properties, and significant outcomes associated with these nanoformulations. This systematic review will be particularly valuable to researchers seeking novel avenues in the field of nano-delivery strategies and exploring the potential clinical applications of Lu.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles