Molecular designs, synthetic strategies, and properties for porphyrins as sensitizers in dye-sensitized solar cells
Abstract
During the past decades, many efforts have been made to develop porphyrin sensitizers for dye-sensitized solar cells (DSSCs) due to their easy fabrication, low-cost production, and relatively high power conversion efficiency (PCE). Some of the molecular design principles and synthetic strategies have been proved to be able to construct high-performance porphyrin-based DSSCs. Herein, we focus on the promising and effective synthetic strategies for rationally designing porphyrins as sensitizers, and emphasize the crucial factors that have a profound impact on the photovoltaic performance to offer insightful views on the correlation between the molecular structure and photovoltaic performance.
- This article is part of the themed collections: Journal of Materials Chemistry A Recent Review Articles and Celebrating ten years of Journal of Materials Chemistry A