Quantum-sized topological insulators/semimetals enable ultrahigh and broadband saturable absorption†
Abstract
Two-dimensional topological insulators/semimetals have recently attracted much attention. However, quantum-sized topological insulators/semimetals with intrinsic characteristics have never been reported before. Herein, we report the high-yield production of topological insulator (i.e., Bi2Se3 and Sb2Te3) and semimetal (i.e., TiS2) quantum sheets (QSs) with monolayer structures and sub-4 nm lateral sizes. Both linear and nonlinear optical performances of the QSs are investigated. The QS dispersions present remarkable photoluminescence with excitation wavelength-, concentration-, and solvent-dependence. The solution-processed QSs-poly(methyl methacrylate) (PMMA) hybrid thin films demonstrate exceptional nonlinear saturation absorption (NSA). Particularly, Bi2Se3 QSs-PMMA enables record-high NSA performance with a broadband feature. Specifically, the (absolute) modulation depths up to 71.6 and 72.4% and saturation intensities down to 1.52 and 0.49 MW cm−2 are achieved at 532 and 800 nm, respectively. Such a phenomenal NSA performance would greatly facilitate their applications in mode-locked lasers and related fields.
- This article is part of the themed collection: Celebrating the 20th anniversary of the National Center for Nanoscience and Technology (NCNST)