Advances of nanoworms in diagnosis, treatment, and theranostics
Abstract
Engineered nanoparticles offer potential applications in the biomedical field, such as drug delivery and magnetic resonance imaging; however, they exhibit poor hemocompatibility. Thus, elongated nanoparticles known as nanoworms with a length of 30 nm have received considerable attention in various applications such as tissue engineering, microfluidics, biosensors, and drug delivery. Synthesizing with different metals, polymers, and biological molecules, nanoworms are used as templates for inorganic nanoparticles, superstructure building blocks, synthetic dendritic cells for immunotherapy, temperature-responsive gels for medical purposes, and traditional nanocarriers for drug delivery. Nanoworms demonstrate significant characteristic benefits over spherical counterparts, such as higher surface area, resembling the extracellular matrix of human cells, availability of numerous attachment points, increased likelihood of effective delivery to biological targets, prolonged circulatory half-life, and clear imaging. Considering nanoworms as an isolated research area, this review article focuses on providing an overview, as well as discussing the advantages, disadvantages, and applications of nanoworms, specifically in the diagnosis, treatment, and theranostics of detrimental diseases such as COVID-19, autoimmune disorders, cancer, bacterial infections, and atherosclerosis. Since the risks, benefits, and wide range of uses of nanoworms remain to be explored, substantial research is beneficial to investigate the development and applicability of their use in the future in a variety of fields, including medicine, electronics, and materials science.
- This article is part of the themed collection: Recent Review Articles