Synergetic improvement in the mechanical properties of polyurethanes with movable crosslinking and hydrogen bonds†
Abstract
Polyurethane (PU) materials with movable crosslinking were prepared by a typical two-step synthetic process using an acetylated γ-cyclodextrin (TAcγCD) diol compound. The soft segment of PU is polytetrahydrofuran (PTHF), and the hard segment consists of hexamethylene diisocyanate (HDI) and 1,3-propylene glycol (POD). The synthesized PU materials exhibited the typical mechanical characteristics of a movable crosslinking network, and the presence of hydrogen bonds from the urethane bonds resulted in a synergistic effect. Two kinds of noncovalent bond crosslinking increased the Young's modulus of the material without affecting its toughness. Fourier transform infrared spectroscopy and X-ray scattering measurements were performed to analyze the effect of introducing movable crosslinking on the internal hydrogen bond and the microphase separation structure of PU, and the results showed that the carbonyl groups on TAcγCD could form hydrogen bonds with the PU chains and that the introduction of movable crosslinking weakened the hydrogen bonds between the hard segments of PU. When stretched, the movable crosslinking of the PU materials suppressed the orientation of polymer chains (shish-kebab orientation) in the tensile direction. The mechanical properties of the movable crosslinked PU materials show promise for future application in the industrial field.
- This article is part of the themed collection: Polymer Networks