Kinetics of high density functional polymer nanocomposite formation by tuning enthalpic and entropic barriers†
Abstract
High density functional polymer nanocomposites (PNCs) with high degree of dispersion have recently emerged as novel materials for various thermo-mechanical, optical and electrical applications. The key challenge is to attain a high loading while maintaining reasonable dispersion to attain maximum possible benefits from the functional nanoparticle additives. Here, we report a facile method to prepare polymer grafted nanoparticle (PGNP)-based high density functional polymer nanocomposites using thermal activation of a high density PGNP monolayer to overcome entropic or enthalpic barriers to insertion of PGNPs into the underlying polymer films. We monitor the temperature-dependent kinetics of penetration of a high density PGNP layer and correlate the penetration time to the effective enthalpic/entropic barriers. The experimental results are corroborated by coarse-grained molecular dynamics simulations. Repeated application of the methodology to insert nanoparticles by appropriate control over temperature, time and graft-chain properties can lead to enhanced densities of loading in the PNC. Our method can be engineered to produce a wide range of high density polymer nanocomposite membranes for various possible applications including gas separation and water desalination.
- This article is part of the themed collection: Soft Matter Editorial Board Highlights of 2022