Photophysics in Cs3Cu2I5 and CsCu2I3
Abstract
Cs3Cu2I5 and CsCu2I3 have been demonstrated to emit broad spectrum light with high photoluminescence quantum efficiency (PLQY) due to their low-dimensional electronic structure and soft lattice with a strong electron–phonon coupling. Owing to their advantages of non-toxicity, simple synthesis method, high air stability and thermal stability, they have become one of the most promising semiconductors for next-generation optoelectronic devices. There are two explanations for the mechanism of their broad-spectrum luminescence, that is, self-trapped exciton (STE) luminescence and excited-state structure reorganization. We sort out the halogen composition-related PL, temperature-dependent PL and theoretical calculations of Cs3Cu2I5 and CsCu2I3 in recent years to review the mechanism of this broad spectrum luminescence from the perspectives of electronic dimensions and lattice distortion. In addition, current application status and future prospects of Cs3Cu2I5 and CsCu2I3 in optoelectronic fields are also presented in this review.
- This article is part of the themed collection: 2021 Materials Chemistry Frontiers Review-type Articles