Electromechanical dopant–defect interaction in acceptor-doped ceria†
Abstract
Oxygen defective cerium oxide CeO2−δ exhibits a non-classical giant electromechanical response that is superior to that of lead-based electrostrictors. In this work, we report the key-role of acceptor dopants, with different size and valence (Mg2+, Sc3+, Gd3+, and La3+), on polycrystalline bulk ceria. Different dopants tune the electrostrictive properties by changing the electrosteric dopant–defect interactions. We find two distinct electromechanical behaviors: when the interaction is weak (dopant-vacancy binding energy ≤0.3 eV), electrostriction displays a high coefficient (M33), up to 10−17 (m V−1)2, with strongly time-dependent effects. In contrast, we observe no time-dependent effects when the interaction becomes strong (≥0.6 eV).
- This article is part of the themed collection: Materials Advances HOT Article Collection