Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy†
Abstract
A vibrating nozzle approach was used to produce uniform (∼2 μm) hybrid droplets containing gold-graphene oxide (Au-GO), doxorubicin (DOX), and zwitterionic chitosan (ZC) for assembly of Au-GO@ZC-DOX stealth nanovesicles (NVs) via a single-pass diffusion drying process without any hydrothermal reactions, separations, or purifications. NVs were prepared with a lateral dimension of ∼53.0 nm, a pH-triggered high DOX release profile, and strong photothermal effects. Macrophage opsonization was prevented, resulting in anti-cancer and anti-migration effects, with high intracellular uptake in PANC-1 and MIA PaCa-2 cells. PANC-1 tumor uptake was greater for NVs having the ZC configuration than that for NVs without the ZC configuration, resulting in better anti-tumor effects with minimal toxicities. The vibrating nozzle approach offers significant potential to assemble multi-componential NVs for more efficient anti-tumor treatment and easy user-defined manufacturing of multifunctional nanomedicines.
- This article is part of the themed collection: International Year of the Periodic Table: Precious metals for cancer treatment